logo PRZ
Karta przedmiotu
logo WYDZ

Geometria różniczkowa


Podstawowe informacje o zajęciach

Cykl kształcenia:
2018/2019
Nazwa jednostki prowadzącej studia:
Wydział Matematyki i Fizyki Stosowanej
Nazwa kierunku studiów:
Matematyka
Obszar kształcenia:
nauki ścisłe
Profil studiów:
ogólnoakademicki
Poziom studiów:
drugiego stopnia
Forma studiów:
stacjonarne
Specjalności na kierunku:
zastosowania matematyki w ekonomii, Zastosowania matematyki w informatyce
Tytuł otrzymywany po ukończeniu studiów:
magister
Nazwa jednostki prowadzącej zajęcia:
Katedra Analizy Nieliniowej
Kod zajęć:
1489
Status zajęć:
obowiązkowy dla programu zastosowania matematyki w ekonomii, Zastosowania matematyki w informatyce
Układ zajęć w planie studiów:
sem: 3 / W30 C30 / 5 ECTS / E
Język wykładowy:
polski
Imię i nazwisko koordynatora:
dr Paweł Witowicz
Terminy konsultacji koordynatora:
wtorek 10:30 - 12 piątek 10:30 - 12

Cel kształcenia i wykaz literatury

Główny cel kształcenia:
Zdobycie wiedzy o geometrycznych cechach i wielkościach charakteryzujących krzywe i powierzchnie. Zdobycie umiejętności klasyfikowania krzywych i powierzchni w oraz wyznaczania niezmienników geometrycznych, w szczególności krzywizn.

Ogólne informacje o zajęciach:
Moduł jest poświęcony teorii krzywych i powierzchni w przestrzeni trójwymiarowej. Teoria krzywych zawiera parametryzację łukową, krzywiznę i skręcenie krzywej, reper Freneta, twierdzenia fundamentalne oraz charakteryzujące krzywe. Teoria powierzchni prowadzi do określenia różnych rodzajów krzywizn (Gaussa, średnia, normalna) oraz klasyfikowania punktów powierzchni. Rozważane są także własności krzywych leżących na powierzchni oraz metryka Riemanna.

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 John Oprea Geometria różniczkowa i jej zastosowania PWN. 2002
2 Jacek Gancarzewicz, Barbara Opozda Wstęp do geometrii różniczkowej Wydawnictwo Uniwersytetu Jagiellońskiego. -
3 Biogusław Gdowski Elementy geometrii różniczkowej z zadaniami Oficyna Wydawnicza Politechniki Warszawskiej. 2005
4 Theodore Shifrin Differential Geometry: A First Course in Curves and Surfaces http://alpha.math.uga.edu/~shifrin/ShifrinDiffGeo.pdf. 2016
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 Bogusław Gdowski Elementy geometrii różniczkowej z zadaniami Oficyna Wydawnicza Politechniki Warszawskiej. 2005
2 A.N.Pressley Elementary Differential Geometry Springer. 2010
3 Theodore Shifrin Differential Geometry: A First Course in Curves and Surfaces http://alpha.math.uga.edu/~shifrin/ShifrinDiffGeo.pdf. 2016
Literatura do samodzielnego studiowania
1 Manfredo Do Carmo Differential Geometry of Curves and Surfaces Pearson. 1976

Wymagania wstępne w kategorii wiedzy / umiejętności / kompetencji społecznych

Wymagania formalne:
Student spełnia wymagania formalne określone w regulaminie studiów

Wymagania wstępne w kategorii Wiedzy:
Wiedza z zakresu: rachunek różniczkowy wielu zmiennych i całkowy jednej zmiennej, równania różniczkowe zwyczajne i układy równań różniczkowych liniowych, algebra liniowa.

Wymagania wstępne w kategorii Umiejętności:
Umiejętność obliczania całek, różniczkowania odwzorowań jednej i wielu zmiennych, obliczanie wartości własnych i wektorów własnych macierzy.

Wymagania wstępne w kategorii Kompetencji społecznych:
Umiejętność samodzielnego i zespołowego uczenia się.

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z OEK
MEK01 Student wyznacza reper Freneta krzywej przestrzennej regularnej oraz krzywiznę i skręcenie krzywej wykład, ćwiczenia rachunkowe zaliczenie cz. pisemna K-W01++
K-U16+
U02
U04
U06
MEK02 Wymienia i wyjaśnia twierdzenia, charakteryzujące krzywe płaskie i zawarte w okręgu oraz analizuje krzywe na ich podstawie. Wypowiada twierdzenia fundamentalne. wykład, ćwiczenia problemowe zaliczenie cz. pisemna, egzamin cz. ustna K-W01++
K-W02+++
K-W03+
K-W04++
K-W05++
K-K02++
W02
W03
K01
K02
MEK03 Potrafi ocenić, czy płat powierzchniowy jest regularny, umie wyznaczyć krzywizny główne powierzchni, wyznaczając operator kształtu, oblicza krzywiznę Gaussa powierzchni. wykład, ćwiczenia rachunkowe zaliczenie cz. pisemna K-W01+
K-W03+
K-U10+++
U01
MEK04 Klasyfikuje punkty powierzchni. Oblicza długość krzywej zawartej w powierzchni na podstawie pierwszej formy fundamentalnej. wykład, ćwiczenia problemowe zaliczenie cz. pisemna, egzamin cz. ustna K-W02++
K-K02++
W03
K01
K02
MEK05 Wypowiada definicje i twierdzenia z zakresu treści kształcenia. wykład, ćwicznia problemowe egzamin ustny lub pisemny K-W01+++
K-W03+

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
3 TK01 Krzywe przestrzenne regularne, różne parametryzacje, parametryzacja łukowa, krzywizna i skręcenie, równania Freneta i reper Freneta krzywej sparametryzowanej łukowo. Krzywe zawarte w płaszczyźnie i okręgu. Krzywe sferyczne. W01, W02,W03, W04, C01 - C04 MEK01 MEK02
3 TK02 Reper Freneta, krzywizna i skręcenie krzywej dowolnie sparametryzowanej. Twierdzenia fundamentalne o istnieniu i przystawaniu. W05,W06, C05,C06,C07 MEK01
3 TK03 Płat powierzchniowy regularny. Twierdzenie o funkcjach uwikłanych - zastosowanie. Przestrzeń styczna oraz pole normalne. Orientacja powierzchni. Krzywe na powierzchni. Pierwsza forma fundamentalna - metryka na powierzchni. w07-w09, C08-C10 MEK03 MEK04
3 TK04 Operator kształtu, krzywizna normalna powierzchni w punkcie. Tożsamość Lagrange'a. Krzywizna Gaussa i krzywizna średnia. Kierunki i krzywizny główne. Druga forma fundamentalna. Geodezyjne. Powierzchnie minimalne. W10-W13, C11-C13 MEK03 MEK04
3 TK05 Rozmaitość wielowymiarowa, atlas, przestrzeń styczna, metryka. w14-w15, c14-c15 MEK05

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 3) Przygotowanie do kolokwium: 10.00 godz./sem.
Godziny kontaktowe: 30.00 godz./sem.
Uzupełnienie/studiowanie notatek: 15.00 godz./sem.
Studiowanie zalecanej literatury: 15.00 godz./sem.
Ćwiczenia/Lektorat (sem. 3) Przygotowanie do ćwiczeń: 20.00 godz./sem.
Przygotowanie do kolokwium: 5.00 godz./sem.
Godziny kontaktowe: 30.00 godz./sem.
Dokończenia/studiowanie zadań: 5.00 godz./sem.
Konsultacje (sem. 3)
Egzamin (sem. 3) Przygotowanie do egzaminu: 15.00 godz./sem.
Egzamin pisemny: 2.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Egzamin ustny lub pisemny
Ćwiczenia/Lektorat Oceniane odpowiedzi, kolokwium referat .
Ocena końcowa

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
mek01-04.pdf
zagadnienia_2014-15.pdf

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
geometria1.odt
geometria2.odt

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi nie