logo
Item card
logo

Engineering of heat exchange processes

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical Technology

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: full time

discipline specialities : Technology of medicinal products, Chemical analysis in industry and environment , Organic and polymer technology, Polymer materials engineering, Product and ecological process engineering

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Chemical Engineering and Process Control

The code of the module: 7056

The module status: mandatory for the speciality Polymer materials engineering

The position in the studies teaching programme: sem: 2 / W15 C15 P15 / 4 ECTS / Z

The language of the lecture: Polish

The name of the coordinator: Mirosław Szukiewicz, DSc, PhD, Eng.

semester 2: Maksymilian Olbrycht, PhD, Eng.

semester 2: Michał Kołodziej, PhD, Eng.

The aim of studying and bibliography

The main aim of study: Goal of the education is to tranfer the knowledge to students on processes of heat exchange in typical heat exchangers used in industry

The general information about the module: The course inncludes lecture on the concept, mathematical modelling, design of heat exchangers 15, heat exchanger design 15 h and seminar 15h.

Bibliography required to complete the module
Bibliography used during lectures
1 T. Hobler Ruch ciepła i wymienniki WNT W-wa . 1976
2 A.Skoczylas Przenoszenie ciepła Oficyna Wydawnicza Politechniki Wrocławskiej . 1999
3 R. Koch, A. Kozioł Dyfuzyjno – cieplny rozdział substancji WNT W-wa. 1994
Bibliography used during classes/laboratories/others
1 R. Zarzycki i inni Zadania rachunkowe z inżynierii chemicznej PWN W-wa . 1980
2 Z. Kawala i inni Zbiór zadań z podstawowych procesów inżynierii chemicznej Skrypty Politechniki Wrocławskiej. 1980
3 K.F. Pawłow, i inni Przykłady i zadania z zakresu aparatury i inżynierii chemicznej WNT W-wa . 1971
4 T. Kudra i inni Zbiór zadań z podstaw teoretycznych inżynierii chemicznej i procesowej WNT W-wa. 1985
5 Bandrowski i inn Materiały pomocnicze do ćwiczeń i projektów z inżynierii chemicznej Skrypt Politechniki Śląskiej, Gliwice. 1993

Basic requirements in category knowledge/skills/social competences

Formal requirements: registration for the second semester

Basic requirements in category knowledge: Basic knowledge in the scope of heat transfer

Basic requirements in category skills: Student is able to formulate and solve heat balance equations

Basic requirements in category social competences: student is able to work in a team

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Student obtains knowledge in the scope of heat transfer in heat exchangers in batch and continuous systems, in evaporators. lecture, design, laboratory written tests K_W12+
K_U12+
K_U15+
P7S_UW
P7S_WG
02 Student is able to design heat exchanger computer labolatory design of heat exchanger K_U15+
P7S_UW
03 Student is able to determine parameters of heat exchangers seminar test K_U12+
K_U15+
P7S_UW

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
2 TK01 Heat exchangers batch and continuous: principles of operating, construction of exchangers, energetic balances Unsteday stae heat stransfer - cooling and heating objects. Time of cooling and heating up. Evaporators: evaporation of solutions, evaporation in industry, energetic and mass balances, multistage evaporation, temperature loses in multistage evaporators. wykład, ćwiczenia, projekt MEK01 MEK02 MEK03

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 2) The preparation for a test: 10.00 hours/sem.
contact hours: 15.00 hours/sem.
complementing/reading through notes: 5.00 hours/sem.
Studying the recommended bibliography: 5.00 hours/sem.
Class (sem. 2) The preparation for a Class: 2.00 hours/sem.
The preparation for a test: 10.00 hours/sem.
contact hours: 15.00 hours/sem.
Project/Seminar (sem. 2) The preparation for projects/seminars: 2.00 hours/sem.
contact hours: 15.00 hours/sem..
Doing the project/report/ Keeping records: 15.00 hours/sem.
Advice (sem. 2) The participation in Advice: 2.00 hours/sem.
Credit (sem. 2) The preparation for a Credit: 10.00 hours/sem.
The written credit: 2.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture On the basis of mark obtained form the colloquium
Class
Project/Seminar On the basis of the design of heat exchanger
The final grade The final note is calculated according to the scheme: 50%OW+ 30%OC +20%OP, where OW, OC, OP are notes obtained from lecture, classes and performing the heat exchanger design

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 E. Chmiel-Szukiewicz; A. Szałek; M. Szukiewicz Graph Theory in Chemical Kinetics Practice Problems 2024
2 E. Chmiel-Szukiewicz; M. Szukiewicz Generalized Linear Driving Force Formulas for Diffusion and Reaction in Porous Catalysts 2024
3 E. Chmiel-Szukiewicz; M. Szukiewicz; L. Zaręba Application of the kinetic polynomial idea to describecatalytic hydrogenation of propene 2024
4 K. Kaczmarski; M. Szukiewicz Analytical and numerical solutions of linear and nonlinear chromatography column models 2024
5 A. Szałek; M. Szukiewicz Application of transfer function for quick estimation of gas flow parameters—A useful model‐based approach to enhancing measurements 2021
6 E. Chmiel-Szukiewicz; A. Szałek; M. Szukiewicz Kinetic investigations of heterogeneous reactor processes – Optimization of experiments 2021
7 K. Kaczmarski; M. Szukiewicz An efficient and robust method for numerical analysis of a dead zone in catalyst particle and packed bed reactor 2021
8 K. Kaczmarski; M. Szukiewicz Modeling of a Real-Life Industrial Reactor for Hydrogenation of Benzene Process 2021
9 M. Szukiewicz Differential quadrature method for some diffusion-reaction problems 2020
10 M. Szukiewicz Study of reaction - diffusion problem: modeling, exact analytical solution, and experimental verification 2020
11 E. Chmiel-Szukiewicz; K. Kaczmarski; A. Szałek; M. Szukiewicz Dead zone for hydrogenation of propylene reaction carried out on commercial catalyst pellets 2019
12 M. Chutkowski; G. Król; M. Szukiewicz Formation of dead zone in catalytic particles in catalysis and biocatalysis - New alternative method of determination 2019
13 M. Szukiewicz; M. Wójcik A simple method of determination of the degree of gas mixing by numerical Laplace inversion and Maple 2019