Główny cel kształcenia:
Opanowanie podstawowej wiedzy z zakresu właściwości użytkowych i zastosowania materiałów inżynierskich. Poznanie i zrozumienie relacji pomiędzy właściwościami mechanicznymi materiału i jego składem chemicznym, strukturą, mikrostrukturą oraz technologią wytwarzania. Zaznajomienie się z kryteriami doboru materiałów do konkretnych zastosowań, w tym dla lotnictwa.
Ogólne informacje o zajęciach:
Moduł obejmuje zagadnienia z zakresu: klasyfikacji materiałów inżynierskich, ich struktury, metod kształtowania ich właściwości użytkowych, ogólnej charakterystyki materiałów metalicznych, niemetalicznych i kompozytowych.
Materiały dydaktyczne:
Instrukcje do zajęć laboratoryjnych.
1 | Dobrzański L. A. | Materiały inżynierskie i projektowanie materiałowe. Podstawy nauki o materiałach i metaloznawstwo | WNT, Warszawa. | 2006 |
2 | Sieniawski J., Cyunczyk A. | Struktura ciał stałych | Oficyna Wyd. PRz, Rzeszów. | 2008 |
3 | Sieniawski J., Cyunczyk A. | Właściwości ciał stałych | Oficyna Wyd. PRz, Rzeszów. | 2009 |
1 | Sieniawski J.(red) | Metaloznawstwo i podstawy obróbki cieplnej | Oficyna Wyd. PRz, Rzeszów. | 2014 |
1 | Sieniawski J., Cyunczyk A. | Fizykochemia przemian fazowych | Oficyna Wyd. PRz, Rzeszów. | 2008 |
2 | Blicharski M. | Wstęp do inżynierii materiałowej | WNT, Warszawa. | 2009 |
3 | Boczkowska A. i inni | Kompozyty | Oficyna Wyd. Pol. Warszawskiej, Warszawa. | 2003 |
4 | Ashby M.F., Jones D.R.H. | Materiały inżynierskie | WNT, Warszawa. | 1995 |
Wymagania formalne:
Wpis na bieżący semestr.
Wymagania wstępne w kategorii Wiedzy:
Znajomość podstawowych zagadnień fizyki i chemii w zakresie realizowanym w szkole średniej.
Wymagania wstępne w kategorii Umiejętności:
Umiejętność samokształcenia.
Wymagania wstępne w kategorii Kompetencji społecznych:
Świadomość wagi i zrozumienie skutków i aspektów pozatechnicznej działalności inżynierskiej. Umiejętność współdziałania i pracy w grupie.
MEK | Student, który zaliczył zajęcia | Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia | Metody weryfikacji każdego z wymienionych efektów kształcenia | Związki z KEK | Związki z PRK |
---|---|---|---|---|---|
MEK01 | zna właściwości materiałów inżynierskich i umie je powiązać ze strukturą i mikrostrukturą | wykład, laboratorium | kolokwium, sprawdzian pisemny |
K-W08+++ K-W12+++ |
P6S-WG P6S-WK |
MEK02 | zna zjawiska i procesy stosowane w technologiach kształtowania właściwości materiałów inżynierskich | wykład, laboratorium | kolokwium, sprawdzian pisemny |
K-W08+++ K-W12+++ |
P6S-WG P6S-WK |
MEK03 | zna podstawowe metody badawcze do oceny jakości i mikrostruktury materiałów inżynierskich (metalografia, metody nieniszczące) | laboratorium | sprawdzian pisemny, obserwacja wykonawstwa, raport pisemny |
K-W08+++ |
P6S-WG |
MEK04 | Student posiada pogłębioną wiedzę i jest przygotowany do prowadzenia badań naukowych. | laboratorium, wykład | sprawdzian pisemny, sprawozdanie z ćwiczeń laboratoryjnych |
K-W08++ |
P6S-WG |
Sem. | TK | Treści kształcenia | Realizowane na | MEK |
---|---|---|---|---|
2 | TK01 | W01 | MEK01 | |
2 | TK02 | W02 | MEK01 | |
2 | TK03 | W03 | MEK01 MEK02 | |
2 | TK04 | W04, L03 | MEK01 MEK02 MEK03 | |
2 | TK05 | W05, L04 | MEK01 MEK02 MEK03 | |
2 | TK06 | W06 | MEK01 MEK02 | |
2 | TK07 | W07, L05 | MEK01 MEK02 MEK03 | |
2 | TK08 | W08, L06 | MEK01 MEK02 MEK03 | |
2 | TK09 | W09-W12, L07, L08 | MEK01 MEK02 MEK03 | |
2 | TK10 | W13 | MEK01 MEK03 MEK04 | |
2 | TK11 | W14, W15 | MEK01 MEK02 | |
2 | TK12 | L01, L02 | MEK01 MEK03 |
Forma zajęć | Praca przed zajęciami | Udział w zajęciach | Praca po zajęciach |
---|---|---|---|
Wykład (sem. 2) | Godziny kontaktowe:
30.00 godz./sem. |
Uzupełnienie/studiowanie notatek:
3.00 godz./sem. Studiowanie zalecanej literatury: 10.00 godz./sem. |
|
Laboratorium (sem. 2) | Przygotowanie do laboratorium:
8.00 godz./sem. Przygotowanie do kolokwium: 5.00 godz./sem. |
Godziny kontaktowe:
15.00 godz./sem. |
Dokończenia/wykonanie sprawozdania:
5.00 godz./sem. |
Konsultacje (sem. 2) | Przygotowanie do konsultacji:
1.00 godz./sem. |
Udział w konsultacjach:
5.00 godz./sem. |
|
Zaliczenie (sem. 2) | Przygotowanie do zaliczenia:
6.00 godz./sem. |
Zaliczenie pisemne:
1.00 godz./sem. |
Forma zajęć | Sposób wystawiania oceny podsumowującej |
---|---|
Wykład | Ocena końcowego testu pisemnego obejmującego zagadnienia omawiane na wykładach (w tym nierealizowane w ramach zajęć laboratoryjnych) |
Laboratorium | Średnia arytmetyczna ocen z kolokwiów |
Ocena końcowa | Średnia ważona ocen z laboratorium (L) i testu z wykładów (W) równa 0,8L + 0,2W |
Wymagane podczas egzaminu/zaliczenia
(-)
Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)
Inne
(-)
Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie
1 | P. Bałon; B. Kiełbasa; M. Motyka; E. Rejman | Microstructure and Mechanical Properties of 15CDV6 Steel in TIG-Welded Aircraft Truss Structures | 2025 |
2 | I. Dul; K. Krystek; M. Motyka; M. Wierzbińska | Effect of Vacuum Brazing Conditions of Inconel 718 Superalloy Sheets on Microstructure and Mechanical Properties of Joints | 2024 |
3 | J. Adamus; M. Motyka; S. Mróz; M. Poręba; A. Stefanik; W. Więckowski; W. Ziaja | The influence of the rolling method on cold forming ability of explosive welded Ti/steel sheets | 2024 |
4 | M. Motyka; R. Ostrowski; M. Szpunar; T. Trzepieciński; W. Ziaja | Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal | 2024 |
5 | M. Motyka; R. Ostrowski; M. Szpunar; T. Trzepieciński; W. Ziaja; K. Żaba | Thermo-Mechanical Numerical Simulation of Friction Stir Rotation-Assisted Single Point Incremental Forming of Commercially Pure Titanium Sheets | 2024 |
6 | R. Albrecht; K. Gancarczyk; A. Gradzik; A. Kawalec; M. Kawalec; B. Kościelniak; M. Motyka; D. Szeliga; W. Ziaja | The Effect of Re Content on Microstructure and Creep Resistance of Single Crystal Castings Made of Nickel-Based Superalloys | 2024 |
7 | R. Buszta; A. Gradzik; B. Kościelniak; K. Krupa; P. Kwolek; M. Motyka; W. Nowak; A. Obłój; T. Tokarski; M. Wojnicki | Wear resistance of hard anodic coatings fabricated on 5005 and 6061 aluminum alloys | 2024 |
8 | B. Iżowski; M. Motyka; A. Wojtyczka | Numerical Simulation of Low-Pressure Carburizing and Gas Quenching for Pyrowear 53 Steel | 2023 |
9 | J. Adamus; M. Dyner; M. Motyka; W. Więckowski | Tribological Aspects of Sheet Titanium Forming | 2023 |
10 | J. Adamus; P. Lacki; M. Motyka; W. Więckowski | A New Method of Predicting the Parameters of the Rotational Friction Welding Process Based on the Determination of the Frictional Heat Transfer in Ti Grade 2/AA 5005 Joints | 2023 |
11 | R. Cygan; S. Fuglewicz; M. Gromada; M. Motyka; D. Szeliga; W. Ziaja | Study of Solidification Process of Ni-Based Superalloy Castings Manufactured in Industrial Conditions with the Use of Novel Thermal Insulating Module Technique | 2023 |
12 | J. Adamus; M. Dyner; P. Lacki; M. Motyka; W. Więckowski | Numerical and Experimental Analysis of Titanium Sheet Forming for Medical Instrument Parts | 2022 |
13 | K. Krystek; K. Krzanowska; M. Motyka; M. Wierzbińska | The Effect of Selected Process Conditions on Microstructure Evolution of the Vacuum Brazed Joints of Hastelloy X Nickel Superalloy Sheets | 2022 |
14 | M. Motyka | Martensite Formation and Decomposition during Traditional and AM Processing of Two-Phase Titanium Alloys-An Overview | 2021 |
15 | M. Motyka | Titanium Alloys and Titanium-Based Matrix Composites | 2021 |
16 | A. Baran-Sadleja; M. Motyka; K. Ślemp; W. Ziaja | The effect of plastic deformation on martensite decomposition process in Ti-6Al-4V alloy | 2020 |
17 | K. Kubiak; M. Motyka; J. Sieniawski; W. Ziaja | Cyclic creep behaviour of two-phase Ti-6Al-2Mo-2Cr alloy | 2020 |
18 | P. Lacki; G. Luty; M. Motyka; P. Wieczorek; W. Więckowski | Evaluation of Usefulness of AlCrN Coatings for Increased Life of Tools Used in Friction Stir Welding (FSW) of Sheet Aluminum Alloy | 2020 |
19 | R. Cygan; M. Motyka; J. Nawrocki; J. Sieniawski; D. Szeliga; W. Ziaja | Effect of cooling rate on macro- and microstructure of thin-walled nickel superalloy precision castings | 2020 |
20 | W. Chromiński ; M. Motyka; W. Nowak; B. Wierzba | Characterization of the Interface Between α and β Titanium Alloys in the Diffusion Couple | 2020 |