logo
Karta przedmiotu
logo

Technologie proekologiczne

Podstawowe informacje o zajęciach

Cykl kształcenia: 2017/2018

Nazwa jednostki prowadzącej studia: Wydział Budownictwa, Inżynierii środowiska i Architektury

Nazwa kierunku studiów: Inżynieria środowiska

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: drugiego stopnia

Forma studiów: niestacjonarne

Specjalności na kierunku: Alternatywne źródła energii, Ciepłownictwo i klimatyzacja, Infrastruktura i ekorozwój, Oczyszczanie ścieków i utylizacja odpadów, Uzdatnianie wód, Zaopatrzenie w wodę i odprowadzanie ścieków

Tytuł otrzymywany po ukończeniu studiów: magister inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Infrastruktury i Gospodarki Wodnej

Kod zajęć: 6370

Status zajęć: obowiązkowy dla programu

Układ zajęć w planie studiów: sem: 2 / W10 C15 / 3 ECTS / Z

Język wykładowy: polski

Imię i nazwisko koordynatora: prof. dr hab. inż. Daniel Słyś

semestr 2: dr inż. Sabina Kordana-Obuch

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Zapoznanie studenta z instalacjami i technologiami proekologicznymi

Ogólne informacje o zajęciach: Moduł z grupy modułów kształcenia w zakresie podstawowych metod, technik, narzędzi i materiałów

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Kucowski J. Energetyka a ochrona środowiska WNT Warszawa. 1997
2 Nowak Z. Zarządzanie środowiskiem Politechnika Śląska. 2001
3 Słyś D., Kordana S. Odzysk ciepła odpadowego w instalacjach i systemach kanalizacyjnych KaBe Krosno. 2013
4 Słyś D Zrównowazone systemy odwodnienia miast DWE. 2013
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 Słyś D., Kordana S. Odzysk ciepła odpadowego w instalacjach i systemach kanalizacyjnych KaBe. 2013
Literatura do samodzielnego studiowania
1 Czasopismo Prawo i Środowisko .
2 Czasopismo Przegląd Komunalny .
3 Czasopismo Ochrona Powietrza i Problemy Odpadów .

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Zaliczone poprzedzające semestry

Wymagania wstępne w kategorii Wiedzy: Znajomość podstawowych zagadnień z zakresu instalacji sanitranych

Wymagania wstępne w kategorii Umiejętności: Umiejętność podstawowych obliczeń dotyczących instalacji i technologii sanitarnych

Wymagania wstępne w kategorii Kompetencji społecznych: Umiejętność pracy w grupie

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z OEK
01 Posiada wiedzę z zakresu stosowania proekologicznych instalacji i technologii w obszarze inżynierii środowiska na podstawie aktualnych kryteriów ochrony środowiska i zasady minimalizacji kosztów. Wykład kolokwium K_W15++
K_K02++
K_K08+
T2A_W07++
T2A_K02+
T2A_K07+
02 Posiada umiejętności pozwalające na identyfikację technologii ekologicznych. Potrafi przedstawić wybrane technologie proekologiczne. Potrafi wykonać obliczenia efektywności finansowej ćwiczenia audytoryjne prezentacja ustana referatu K_U01+
K_U12+
T2A_U01+
T2A_U12+

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
2 TK01 Podstawowe wiadomości z zakresu ekologii i rozwoju zrównoważonego. Instalacje proekologiczne. Przykłady instalacji proekologicznych w gospodarce wodno-ściekowej i wytwarzaniu energii. Instalacje gospodarczego wykorzystania wód opadowych W MEK01
2 TK02 Wykonanie opracowania dotyczącego instalacji proekologicznej Ć MEK01

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 2) Godziny kontaktowe: 10.00 godz./sem.
Uzupełnienie/studiowanie notatek: 1.00 godz./sem.
Studiowanie zalecanej literatury: 10.00 godz./sem.
Ćwiczenia/Lektorat (sem. 2) Przygotowanie do ćwiczeń: 10.00 godz./sem.
Przygotowanie do kolokwium: 10.00 godz./sem.
Godziny kontaktowe: 15.00 godz./sem.
Konsultacje (sem. 2)
Zaliczenie (sem. 2) Przygotowanie do zaliczenia: 10.00 godz./sem.
Zaliczenie pisemne: 1.00 godz./sem.
Inne: 10.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Kolokwium zaliczeniowe
Ćwiczenia/Lektorat Ustna prezentacja przygotowanego opracowania
Ocena końcowa Średnia arytmetyczna ocen uzyskanych z kolokwium i opracowania

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 B. Piotrowska; D. Słyś Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-In-Tube” Heat Exchanger: Case Study of Poland 2023
2 B. Piotrowska; D. Słyś Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water 2023
3 B. Piotrowska; D. Słyś Variant analysis of financial and energy efficiency of the heat recovery system and domestic hot water preparation for a single-family building: The case of Poland 2023
4 B. Piotrowska; D. Słyś; A. Stec Koryto odwodnieniowe 2023
5 B. Piotrowska; K. Pochwat; D. Słyś Liniowy wymiennik ciepła 2023
6 B. Piotrowska; K. Pochwat; D. Słyś Próg drogowy, zwłaszcza zwalniający 2023
7 D. Słyś; A. Stec New Bioretention Drainage Channel as One of the Low-Impact Development Solutions: A Case Study from Poland 2023
8 M. Kida; P. Koszelnik; K. Pochwat; D. Słyś Wpust kanalizacyjny 2023
9 P. Ogarek; D. Słyś; M. Wojtoń Hydrogen as a Renewable Energy Carrier in a Hybrid Configuration of Distributed Energy Systems: Bibliometric Mapping of Current Knowledge and Strategies 2023
10 S. Kordana-Obuch; D. Słyś; M. Starzec Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area 2023
11 S. Kordana-Obuch; D. Słyś; M. Starzec Evaluation of the Influence of Catchment Parameters on the Required Size of a Stormwater Infiltration Facility 2023
12 S. Kordana-Obuch; D. Słyś; M. Starzec; M. Wojtoń Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies 2023
13 S. Kordana-Obuch; K. Pochwat; D. Słyś; M. Starzec Poziomy wymiennik ciepła 2023
14 D. Słyś; A. Stec Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries 2022
15 J. Dziopak; D. Słyś; P. Stanowska; M. Starzec An innovative rainwater system as an effective alternative for cubature retention facilities 2021
16 M. Ruszel; D. Słyś; A. Soboń; A. Wiącek Prospects for the Use of Hydrogen in the Armed Forces 2021
17 S. Kordana-Obuch; D. Słyś; M. Starzec Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences 2021
18 A. Mazur; D. Słyś; A. Stec Poziomy prysznicowy wymiennik ciepła 2020
19 D. Czarniecki; K. Pochwat; D. Słyś An Analysis of Waste Heat Recovery from Wastewater on Livestock and Agriculture Farms 2020
20 D. Papciak; D. Słyś; J. Zamorska; M. Zdeb The Quality of Rainwater Collected from Roofs and the Possibility of Its Economic Use 2020
21 D. Słyś; A. Stec Centralized or Decentralized Rainwater Harvesting Systems: A Case Study 2020
22 J. Dziopak; D. Słyś; M. Starzec An Analysis of Stormwater Management Variants in Urban Catchments 2020
23 J. Dziopak; S. Kordana; K. Pochwat; D. Słyś; M. Starzec Kanał transportowy, zwłaszcza dla ścieków ogólnospławnych lub deszczowych 2020
24 J. Dziopak; S. Kordana; K. Pochwat; D. Słyś; M. Starzec Łazienkowy wymiennik ciepła 2020
25 S. Kordana-Obuch; B. Piotrowska; K. Pochwat; D. Słyś Critical Analysis of the Current State of Knowledge in the Field of Waste Heat Recovery in Sewage Systems 2020
26 S. Kordana; D. Słyś An analysis of important issues impacting the development of stormwater management systems in Poland 2020
27 S. Kordana; D. Słyś Decision Criteria for the Development of Stormwater Management Systems in Poland 2020
28 S. Kordana; K. Pochwat; D. Słyś; M. Starzec Kanał przesyłowy 2020
29 S. Kordana; K. Pochwat; D. Słyś; M. Starzec Poziomy wymiennik ciepła 2020
30 D. Słyś; A. Stec Zielone dachy i ściany. Projektowanie, wykonastwo, użytkowanie 2019
31 J. Dziopak; B. Piotrowska; D. Słyś; A. Stec Hydrological and financial model of rainwater harvesting system 2019
32 J. Dziopak; D. Słyś Retention canals as an effective mean for controlling of storm water hydraulic transport 2019
33 J. Dziopak; E. Neverova-Dziopak; D. Słyś Technical progress in the drainage infrastructure of modern cities 2019
34 J. Dziopak; K. Pochwat; D. Słyś Zbiornik retencyjny ścieków deszczowych i ogólnospławnych 2019
35 S. Kordana; K. Pochwat; D. Słyś; M. Starzec Comparison of two-prototype near-horizontal Drain Water Heat Recovery units on the basis of effectiveness 2019
36 S. Kordana; K. Pochwat; D. Słyś; M. Starzec Opportunities and Threats of Implementing Drain Water Heat Recovery Units in Poland 2019