logo
Karta przedmiotu
logo

Eksploatacja silników spalinowych

Podstawowe informacje o zajęciach

Cykl kształcenia: 2019/2020

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Mechanika i budowa maszyn

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: drugiego stopnia

Forma studiów: niestacjonarne

Specjalności na kierunku: Alternatywne źródła i przetwarzanie energii, Komputerowo wspomagane wytwarzanie, Organizacja produkcji, Pojazdy samochodowe, Programowanie i automatyzacja obróbki

Tytuł otrzymywany po ukończeniu studiów: magister inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Pojazdów Samochodowych i Inżynierii Transportu

Kod zajęć: 6213

Status zajęć: wybierany dla specjalności Pojazdy samochodowe

Układ zajęć w planie studiów: sem: 3 / W9 P6 / 1 ECTS / Z

Język wykładowy: polski

Imię i nazwisko koordynatora: dr hab. inż. prof. PRz Hubert Kuszewski

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Poznanie procesów zachodzących podczas eksploatacji silników spalinowych. Wprowadzenie do użytkowania silników. Poznanie zasad prawidłowej eksploatacji układów silnika spalinowego. Poznanie przyczyn uszkodzeń silników spalinowych. Umiejętność oceny zużycia i analizy uszkodzeń w tłokowych silnikach spalinowych.

Ogólne informacje o zajęciach: Przedmiot wybieralny dla studentów trzeciego semestru.

Materiały dydaktyczne: Instrukcje do ćwiczeń.

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Legutko A. Podstawy eksploatacji maszyn Wydawnictwo Politechniki Poznańskiej. 1999
2 Hebda M. Eksploatacja samochodów Instytut Technologii Eksploatacji. 2007
3 Kaźmierczak A. Tarcie i zużycie zespołu tłok-pierścienie-cylinder Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław. 2005
Literatura do samodzielnego studiowania
1 Adamiec P., Dziubiński J., Filipczyk J. Technologia napraw pojazdów samochodowych Wydawnictwo Politechniki Śląskiej, Gliwice. 2002
2 Cypko J., Cypko E. Podstawy technologii i organizacji naprawy pojazdów mechanicznych WKŁ. 1982

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Rejestracja na 3 semestr studiów kierunku Mechanika i Budowa Maszyn.

Wymagania wstępne w kategorii Wiedzy: Wymagana jest wiedza na poziomie inżynierskim z zakresu eksploatacji silników spalinowych.

Wymagania wstępne w kategorii Umiejętności: Umiejętność analizy i pozyskiwania danych z literatury.

Wymagania wstępne w kategorii Kompetencji społecznych: Student rozumie konieczność samokształcenia i dokształcania.

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK
01 Zna podstawowe procesy tribologiczne i zużyciowe elementów silników spalinowych wykład test pisemny K_W02+
K_W09+
P7S_WG
02 Zna zasady weryfikacji głównych elementów silników spalinowych ze wskazaniem na metody pośrednie i bezpośrednie wykład, laboratorium, projekt zespołowy test pisemny, zaliczenie cz. ustna K_W09+
P7S_WG
03 Potrafi dokonać oceny zużycia elementów silnika spalinowego. Umie wskazać na główne przyczyny zużycia elementów silnika. Umie wskazać na metody zwiększające trwałość elementów silnika. laboratorium, projekt zespołowy zaliczenie cz. ustna K_W09+
K_U01+
K_K02+
P7S_KO
P7S_UW
P7S_WG
04 Potrafi wskazać na efektywne wykorzystanie silników spalinowych, zna zasady pracy w zespole w zakresie oceny zużycia elementów silnika wykład, laboratorium, projekt zespołowy zaliczenie cz. ustna, test pisemny K_U04+
P7S_UK

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
3 TK01 Wprowadzanie do eksploatacji silników spalinowych. Procesy trybologiczne w węzłach ruchowych tłokowych silników spalinowych. Środki smarne w eksploatacji silnika - uwarunkowania optymalnych warunków smarowania hydrodynamicznego. Paliwa silnikowe w aspekcie eksploatacji silników, paliwa alternatywne. Analiza procesów zużywania metalowych elementów silnika. Analiza typowych usterek eksploatacyjnych silników ZI i ZS. Eksploatacja silników w aspekcie emisji toksycznych składników spalin. Wykorzystanie diagnostyki komputerowej w czynnościach obsługowych silników. W01-W08 MEK01 MEK02
3 TK02 Wprowadzenie do zajęć. Zasady BHP w laboratorium ESS. Ocena i analiza uszkodzeń zespołu głowicy. Ocena i analiza uszkodzeń układu korbowo-tłokowego. Prezentacja metody oceny smarności oleju silnikowego. Badanie wpływu temperatury na wyniki pomiaru elementów silnika. Kontrola i weryfikacja stanu zespołu turbosprężarkowego. Ogólna ocena stanu silnika za pomocą systemu diagnostyki komputerowej. Zaliczenie ćwiczeń. L01-L08 MEK03 MEK04

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 3) Godziny kontaktowe: 9.00 godz./sem.
Projekt/Seminarium (sem. 3) Przygotowanie do zajęć projektowych/seminaryjnych: 2.00 godz./sem.
Godziny kontaktowe: 6.00 godz./sem..
Przygotowanie do prezentacji: 5.00 godz./sem.
Konsultacje (sem. 3)
Zaliczenie (sem. 3)

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Na zaliczeniu pisemnym w formie testu wielokrotnego wyboru złożonego z 10 pytań sprawdzana jest realizacja następujących efektów modułowych: MEK01, MEK02. Ocena z egzaminu determinowana jest liczbą uzyskanych punktów. Liczba uzyskanych punktów wraz z odpowiadającymi im ocenami: 0 ÷ 5 brak zaliczenia egzaminu; 6 dst; 7 +dst; 8 db; 9 +db; 10 bdb;
Projekt/Seminarium Sprawozdania i odpowiedzi z części laboratoryjnej weryfikują realizację następujących efektów modułowych: MEK03, MEK04. Warunkiem zaliczenia części laboratoryjnej jest poprawne wykonanie wszystkich sprawozdań. Ocenę z części laboratoryjnej stanowi średnia z ocen ze sprawozdań.
Ocena końcowa Warunkiem zaliczenia modułu jest osiągnięcie wszystkich efektów modułowych i zaliczenie wszystkich form zajęć. Ocenę końcową stanowi ocena z części pisemnej zaliczenia (60%) oraz laboratorium (40%). Przyjmuje się następujące przeliczenie uzyskanej średniej ważonej na ocenę końcową: 3,00 ÷ 3,34 dst; 3,35 ÷ 3,75 +dst; 3,76 ÷ 4,25 db; 4,26 ÷ 4,64 +db; 4,65 ÷ 5,00 bdb.

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 A. Jaworski; A. Krzemiński; H. Kuszewski; P. Woś A comparative study on selected physical properties of diesel–ethanol–dodecanol blends 2024
2 K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer 2024
3 K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lew; P. Woś Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio 2024
4 S. Boichenko; H. Kuszewski; V. Ribun; P. Woś Analysis of Conventional and Nonconventional GTL Technologies: Benefits and Drawbacks 2024
5 A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś The investigation of auto-ignition properties of 1-butanol–biodiesel blends under various temperatures conditions 2023
6 A. Jaworski; H. Kuszewski; R. Longwic; P. Sander Assessment of Self-Ignition Properties of Canola Oil–n-Hexane Blends in a Constant Volume Combustion Chamber and Compression Ignition Engine 2023
7 B. Babiarz; A. Jaworski; H. Kuszewski; V. Mateichyk; M. Mądziel; S. Porada; M. Śmieszek; P. Woś Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NOX Emissions Reduction in Sustainable Public Transport 2023
8 K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; K. Lew; R. Longwic; P. Wojewoda; P. Woś Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests 2023
9 A. Jaworski; H. Kuszewski; M. Mądziel Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions 2022
10 K. Balawender; T. Campisi ; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda; P. Woś Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle 2022
11 T. Campisi; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; P. Woś The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques 2022
12 A. Jaworski; H. Kuszewski; M. Mądziel Lubricity of Ethanol-Diesel Fuel Blends-Study with the Four-Ball Machine Method 2021
13 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; J. Lubas Effect of temperature on tribological properties of 1-butanol–diesel fuel blends-Preliminary experimental study using the HFRR method 2021
14 T. Campisi; A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool 2021
15 K. Balawender; A. Jaworski; D. Konieczny; H. Kuszewski; P. Woś Wykrywanie spalania stukowego w silniku dwupaliwowym 2020
16 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lejda; S. Siedlecka; A. Ustrzycki; E. Zielińska Modeling of Unburned Hydrocarbon Emission in a Di Diesel Engine Using Neural Networks 2020
17 K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures 2020
18 K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; P. Woś The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled by Petrol and LPG 2020
19 K. Balawender; M. Jaremcio; A. Jaworski; A. Krzemiński; H. Kuszewski; K. Lew; M. Mądziel; P. Woś Realizacja cyklu jezdnego w badaniach emisji zanieczyszczeń na hamowni podwoziowej 2020
20 K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; M. Mądziel; L. Pavliukh; D. Savostin-Kosiak Assessment of CO2 emissions and energy consumption during stationary test of vehicle with SI engine powered by different fuels 2020
21 S. Boichenko; H. Kuszewski; K. Lejda; I. Trofimov; A. Yakovlieva Anti-wear Properties of Jet Fuel with Camelina Oils Bio-Additives 2020
22 H. Kuszewski Effect of Injection Pressure and Air–Fuel Ratio on the Self-ignition Properties of 1-butanol–Diesel Fuel Blends: Study Using a Constant-Volume Combustion Chamber 2019
23 H. Kuszewski Experimental investigation of the autoignition properties of ethanol-biodiesel fuel blends 2019
24 H. Kuszewski Experimental study of the autoignition properties of n-butanol–diesel fuel blends at various ambient gas temperatures 2019
25 S. Boichenko; H. Kuszewski; K. Lejda; O. Vovk; A. Yakovlieva Development of alternative jet fuels modified with camelina oil bio-additives 2019