logo
Karta przedmiotu
logo

Symulacja ruchu i kolizji samochodów

Podstawowe informacje o zajęciach

Cykl kształcenia: 2019/2020

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Mechanika i budowa maszyn

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: drugiego stopnia

Forma studiów: niestacjonarne

Specjalności na kierunku: Alternatywne źródła i przetwarzanie energii, Komputerowo wspomagane wytwarzanie, Organizacja produkcji, Pojazdy samochodowe, Programowanie i automatyzacja obróbki

Tytuł otrzymywany po ukończeniu studiów: magister inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Pojazdów Samochodowych i Inżynierii Transportu

Kod zajęć: 6206

Status zajęć: wybierany dla specjalności Pojazdy samochodowe

Układ zajęć w planie studiów: sem: 3 / W9 L9 / 2 ECTS / Z

Język wykładowy: polski

Imię i nazwisko koordynatora: dr inż. Artur Jaworski

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Celem kształcenia jest nabycie przez studentów pogłębionej wiedzy z zakresu dynamiki ruchu i kolizji samochodów.

Ogólne informacje o zajęciach: Przedmiot obowiązkowy dla studentów 3 sem. specjalności: pojazdy samochodowe

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Wach W. Symulacja wypadków drogowych w programie PC-Crash Wydawnictwo – Instytut Ekspertyz Sądowych. 2014
2 Arczyński S.: Mechanika ruchu samochodu. Wydawnictwo Naukowo-Techniczne, Warszawa . 1994
3 Prochowski L.: Mechanika ruchu. WKiŁ, Warszawa. 2008
4 Siłka W.: Teoria ruchu samochodu. WNT, Warszawa . 2002
5 Mitchke M. Dynamika samochodu WKiŁ, Warszawa. 1989
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 Wach W. Symulacja wypadków drogowych w programie PC-Crash Wydawnictwo-Instytut Ekspertyz Sądowych, Kraków. 2014
2 Arczyński S.: Mechanika ruchu samochodu. Wydawnictwo Naukowo-Techniczne, Warszawa . 1994
3 Prochowski L.: Mechanika ruchu. WKiŁ, Warszawa. 2008
4 Siłka W.: Teoria ruchu samochodu. WNT, Warszawa . 2002
5 Instrukcja obsługi systemu DATRON DLS-2 DATRON. 2000

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Rejestracja na 3 semestr studiów kierunku mechanika i budowa maszyn, specjalność pojazdy samochodowe

Wymagania wstępne w kategorii Wiedzy: Student powinien posiadać wiedzę w zakresie realizowanym w ramach przedmiotów: podstawy konstrukcji maszyn, wytrzymałość materiałów, budowa samochodów, silniki spalinowe.

Wymagania wstępne w kategorii Umiejętności: Brak

Wymagania wstępne w kategorii Kompetencji społecznych: Brak

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK
01 Ma pogłębioną wiedzę odnośnie dynamiki ruchu przyspieszonego, opóźnionego, prostoliniowego i krzywoliniowego samochodu. wykład, laboratorium obserwacja wykonawstwa, raport pisemny K_W09+
K_U01+
P7S_UW
P7S_WG
02 Rozumie aspekty bezpieczeństwa i ekologii związane z ruchem samochodu. wykład, laboratorium obserwacja wykonawstwa, raport pisemny K_W09+
K_K01+
P7S_KO
P7S_WG
03 Potrafi przeprowadzić badania symulacyjne w zakresie dynamiki ruchu i kolizji samochodów. laboratorium obserwacja wykonawstwa, raport pisemny K_W09+
K_U01+
K_U03+
P7S_UW
P7S_WG

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
3 TK01 Dynamika ruchu. Zachowanie się pojazdu w czasie jazdy. Kąt znoszenia koła. Kąt znoszenia pojazdu. Sterowność samochodu. Ruch drgający samochodu. Podstawy rekonstrukcji wypadków. Pisemne zaliczenie obejmujące treści realizowane na wykładzie. W01_W08 MEK01 MEK02
3 TK02 Analiza rozpędzania. Badania elastyczności przyspieszania. Badanie znoszenia samochodu. Badania przyczepności na różnych nawierzchniach.Badania stateczności ruchu krzywoliniowego. Badania procesu hamowania. Badania symulacyjne rekonstrukcji kolizji samochodów. L01-L08 MEK01 MEK02 MEK03

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 3) Godziny kontaktowe: 9.00 godz./sem.
Uzupełnienie/studiowanie notatek: 10.00 godz./sem.
Studiowanie zalecanej literatury: 10.00 godz./sem.
Laboratorium (sem. 3) Przygotowanie do laboratorium: 10.00 godz./sem.
Godziny kontaktowe: 9.00 godz./sem.
Dokończenia/wykonanie sprawozdania: 10.00 godz./sem.
Konsultacje (sem. 3)
Zaliczenie (sem. 3)

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Ocena z wykładu jest zależna od liczby punktów na zaliczeniu pisemnym: 10-11: dst; 12-13: +dst; 14-15:db; 16-17:+db; 18-20: bdb
Laboratorium Ocena z laboratorium jest średnią z ocen z trzech opracowanych raportów z badań symulacyjnych w programie PC-Crash. Ocenę bdb z raportu otrzymuje student, który zrealizował bezbłędnie założone badania, dokonał głębokiej analizy wyników i sformułował szczegółowe wnioski. Ocenę db otrzymuje student, który popełnił mało istotne błędy formalne. Ocenę dst otrzymuje student, który popełnił błędy formalne i merytoryczne.
Ocena końcowa Ocena zaliczeniowa jest średnią arytmetyczną ocen z ćwiczeń laboratoryjnych oraz testu z treści wykładowych.

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 A. Jaworski; A. Kryuchkov; V. Rozen; M. Sergienko; O. Terentiev Removal of Contaminants from an Aqueous Solution by a Magnetic Field Using the Effect of Focusing Ionic Impurities 2024
2 A. Jaworski; A. Krzemiński; H. Kuszewski; P. Woś A comparative study on selected physical properties of diesel–ethanol–dodecanol blends 2024
3 K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer 2024
4 K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lew; P. Woś Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio 2024
5 A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś The investigation of auto-ignition properties of 1-butanol–biodiesel blends under various temperatures conditions 2023
6 A. Jaworski; H. Kuszewski; R. Longwic; P. Sander Assessment of Self-Ignition Properties of Canola Oil–n-Hexane Blends in a Constant Volume Combustion Chamber and Compression Ignition Engine 2023
7 B. Babiarz; A. Jaworski; H. Kuszewski; V. Mateichyk; M. Mądziel; S. Porada; M. Śmieszek; P. Woś Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NOX Emissions Reduction in Sustainable Public Transport 2023
8 K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; K. Lew; R. Longwic; P. Wojewoda; P. Woś Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests 2023
9 S. Boichenko; L. Chelaydyn; A. Jaworski; V. Ribun; S. Viktor; D. Viktoriia; P. Woś; A. Yakovlieva Effect of Diethyl Ether Addition on the Properties of Gasoline-Ethanol Blends 2023
10 A. Jaworski; H. Kuszewski; M. Mądziel Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions 2022
11 A. Jaworski; K. Lejda Inżynieria środków transportu: badania, konstrukcja i technologia: wybrane problemy 2022
12 A. Jaworski; K. Lejda Modelowanie emisji zanieczyszczeń w spalinach silnikowych samochodu osobowego w cyklu jezdnym z uwzględnieniem oporu ruchu samochodu 2022
13 K. Balawender; A. Jaworski; P. Woś Sterowanie wtryskiwaczami wodoru w silniku przepływowym 2022
14 K. Balawender; T. Campisi ; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda; P. Woś Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle 2022
15 M. Bilski; A. Jaworski; K. Lejda Effect of driving resistances on energy demand and exhaust emission in motor vehicles 2022
16 S. Boichenko; A. Jaworski; K. Lejda; I. Shkilniuk; O. Tarasiuk Modern technologies of hydrogen generation and accumulation - analytical overview of theoretical and practical experience 2022
17 S. Boichenko; A. Jaworski; І. Matviyi; I. Shkilniuk; O. Tarasiuk; О. Tselishchev; P. Woś Міжгалузеві проблеми і системні дослідження в паливно-енергетичному секторі 2022
18 T. Campisi; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; P. Woś The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques 2022
19 A. Jaworski; H. Kuszewski; M. Mądziel Lubricity of Ethanol-Diesel Fuel Blends-Study with the Four-Ball Machine Method 2021
20 K. Balawender; A. Jaworski; K. Lejda; M. Mądziel; D. Savostin-Kosiak; A. Ustrzycki Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests 2021
21 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; J. Lubas Effect of temperature on tribological properties of 1-butanol–diesel fuel blends-Preliminary experimental study using the HFRR method 2021
22 M. Jaremcio; A. Jaworski; K. Lejda; M. Mądziel; P. Woś Charakterystyka wybranych testów jezdnych stosowanych w badaniach emisji zanieczyszczeń w spalinach silnikowych samochodów osobowych 2021
23 T. Campisi; A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool 2021
24 T. Campisi; A. Jaworski; M. Mądziel; G. Tesoriere The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City-Poland A Preliminary Assessment of the Results Produced by the Increase of E-Fleet 2021
25 A. Jaworski Odwzorowanie oporów ruchu samochodu podczas badań emisji zanieczyszczeń w spalinach na hamowni podwoziowej 2020
26 A. Jaworski; K. Lejda Systemy i środki transportu: konstrukcja i badania: wybrane zagadnienia 2020
27 A. Jaworski; K. Lejda; M. Mądziel; D. Savostin-Kosiak The Impact of Exhaust Emission from Combustion Engines on the Environment: Modelling of Vehicle Movement at Roundabouts 2020
28 A. Jaworski; K. Lew; P. Wojewoda Wpływ oddziaływania buspasów na parametry ruchu środków transportu drogowego 2020
29 K. Balawender; A. Jaworski; D. Konieczny; H. Kuszewski; P. Woś Wykrywanie spalania stukowego w silniku dwupaliwowym 2020
30 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lejda; S. Siedlecka; A. Ustrzycki; E. Zielińska Modeling of Unburned Hydrocarbon Emission in a Di Diesel Engine Using Neural Networks 2020
31 K. Balawender; M. Jakubowski; A. Jaworski; P. Szymczuk; A. Ustrzycki; P. Woś Application of Variable Compression Ratio VCR Technology in Heavy-Duty Diesel Engine 2020
32 K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures 2020
33 K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; P. Woś The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled by Petrol and LPG 2020
34 K. Balawender; M. Jaremcio; A. Jaworski; A. Krzemiński; H. Kuszewski; K. Lew; M. Mądziel; P. Woś Realizacja cyklu jezdnego w badaniach emisji zanieczyszczeń na hamowni podwoziowej 2020
35 K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; M. Mądziel; L. Pavliukh; D. Savostin-Kosiak Assessment of CO2 emissions and energy consumption during stationary test of vehicle with SI engine powered by different fuels 2020
36 O. Ivanushko; A. Jaworski; A. Loboda; M. Mądziel; D. Savostin-Kosiak; M. Tsiuman Establishing the regularities of correlation between ambient temperature and fuel consumption by city diesel buses 2020
37 S. Boichenko; A. Jaworski; L. Pavliukh; S. Shamanskyi Evaluation of the potential of commercial use of microalgae in the world and in Ukraine 2020
38 S. Boichenko; A. Jaworski; M. Mądziel; L. Pavliukh Comparative assessment of CO2 emissions and fuel consumption in a stationary test of the passenger car running on various fuels 2020
39 S. Boichenko; A. Jaworski; N. Kalmykova; K. Lejda; O. Tarasiuk; O. Vovk Hydrogen technologies and environmental safety of technosphere: the key points of recent tendencies 2020
40 A. Jaworski Problematyka wyznaczania współczynników oporów ruchu samochodów do badań emisji zanieczyszczeń spalin w warunkach symulowanych na hamowni podwoziowej 2019
41 A. Jaworski; K. Lejda; J. Lubas; M. Mądziel Comparison of exhaust emission from Euro 3 and Euro 6 motor vehicles fueled with petrol and LPG based real driving conditions 2019
42 A. Jaworski; K. Lejda; M. Mądziel Creating an emission model based on portable emission measurement system for the purpose of a roundabout 2019
43 K. Balawender; A. Jaworski Wpływ dodatku gazu HHO na wybrane parametry eksploatacyjne silnika o zi o małej pojemności 2019