logo
Item card
logo

Mass transfer in fluid-fluid systems

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical Technology

The area of study: technical sciences

The profile of studing:

The level of study: first degree study

Type of study: past time

discipline specialities : Chemical analysis in industry and environment, Chemical and bioprocess engineering, Organic and polymer technology

The degree after graduating from university: Bachelor of Science (BSc)

The name of the module department : Department of Chemical Engineering and Process Control

The code of the module: 5328

The module status: mandatory for the speciality Chemical and bioprocess engineering

The position in the studies teaching programme: sem: 6, 7 / W18 C18 L18 P9 / 9 ECTS / E,Z

The language of the lecture: Polish

The name of the coordinator: Wojciech Zapała, DSc, PhD, Eng.

The aim of studying and bibliography

The main aim of study: Obtaining by the student's the knowledge about the theory and design of unit operations in chemical engineering.

The general information about the module: Course conducted in Polish in 6 semester

Bibliography required to complete the module
Bibliography used during lectures
1 R. Koch, A. Kozioł Dyfuzyjno – cieplny rozdział substancji WNT W-wa 1994 WNT W-wa. 1994
2 A. Selecki, L. Gradoń Podstawowe procesy przemysłu chemicznego WNT W-wa . 1985
3 T. Hobler Dyfuzyjny ruch masy i absorbery WNT W-wa. 1976
4 R. Zarzycki i inni Absorpcja i absorbery WNT W-wa. 1987
5 J. Bandrowski, L. Troniewski Destylacja i rektyfikacja PWN W-wa. 1980
6 Z. Ziołkowski Ekstrakcja cieczy w przemyśle chemicznym WNT W-wa. 1980
7 M. Serwiński Zasady Inżynierii chemicznej i procesowej WNT W-wa. 1982
Bibliography used during classes/laboratories/others
1 R. Zarzycki i inni Zadania rachunkowe z inżynierii chemicznej PWN W-wa. 1980
2 T. Kudra i inni Zbiór zadań z podstaw teoretycznych inżynierii chemicznej i procesowej WNT W-wa. 1985
3 J. Bandrowski i inni Materiały pomocnicze do ćwiczeń i projektów z inżynierii chemicznej Skrypt Politechniki Śląskiej, Gliwice. 1993
4 R. Petrus i inni Inżynieria chemiczna - laboratorium Politechnika Rzeszowska. 1990
Bibliography to self-study
1 .

Basic requirements in category knowledge/skills/social competences

Formal requirements: Knowledge of Mathematics, Physics, Physical Chemistry, Thermodynamics, Chemical Technology and Fundamentals of Chemical and Process Engineering

Basic requirements in category knowledge: The student has ordered knowledge of mathematics, physics, chemistry, covering all issues related to the application of scientific methods in the type of engineering issues.

Basic requirements in category skills: He has ordered, basic knowledge in computer science that allows for efficient handling of basic utility programs such as Matlab, Origin, Excel, etc.

Basic requirements in category social competences: It has a sense of responsibility related to the performance of the engineering profession.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Has the knowledge about the theory and design of unit operations in chemical engineering. lecture written and oral exam K_W09+++
K_W12+++
K_U06++
K_K01++
P6S_KK
P6S_KO
P6S_KR
P6S_UU
P6S_WG
02 Has the knowledge and ability to solve mathematical problems related to the design of basic unit operations of chemical engineering. solving classes Final test K_W09+++
K_U06+++
K_K01+++
P6S_KK
P6S_KO
P6S_KR
P6S_UU
P6S_WG
03 Has the ability to design basic unit processes of chemical engineering. project Evaluation projects carried out individually K_W09+++
K_W12+++
K_U04+++
K_U06+++
K_K01+++
K_K02+++
P6S_KK
P6S_KO
P6S_KR
P6S_UU
P6S_UW
P6S_WG
04 Has the ability to service and identify the basic chemical apparatus laboratory Evaluation performed exercises and possibly theoretical test K_U04+++
K_U06+++
K_U15+++
P6S_UU
P6S_UW

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
6 TK01 Absorption. Characteristics of the process. The equilibrium of gas - liquid. The mass balance of the process and the operating line. Methods of mass exchanger high calculation.Hydrodynamic diameter of the apparatus. Apparatus. Distillation and rectification. Liquid - vapor equilibrium for two-and multi-component systems . Simple distillation. Steam distillation. Adjustment of the two-component batch and continuous : the balance sheets, operating lines, minimum and maximum reflux, determination of the number of theoretical plates - graphical and analytical methods. Rectification of multicomponent mixtures. Design issues: the selection of the type of apparatus, the characteristics of the shelves and their efficiency, mass transfer coefficients , packed columns. Extraction in liquid - liquid systems. Basics of physico-chemical extraction : solubility equilibrium, partition coefficient, the selectivity of the solvent , the drip mechanism. Calculation of the mass transfer coefficients in the extraction process. Multi-stage extraction. Determination of the minimum , maximum, and optimal amounts of solvent. Calculating the number of degrees and their efficiency . Extraction column ternary systems : computing the height and diameter of the column . Apparatus . Topics exercises: closely related to themes presented in the lecture. Laboratory: Five laboratory exercises related to the topic of the course Projects : Students perform project of the the mass exchanger fluid - fluid system : the rectification column and/or absorber. W30, C45, L30, P15 MEK01 MEK02 MEK03 MEK04

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 6) The preparation for a test: 6.00 hours/sem.
contact hours: 18.00 hours/sem.
complementing/reading through notes: 5.00 hours/sem.
Studying the recommended bibliography: 30.00 hours/sem.
Class (sem. 6) The preparation for a Class: 5.00 hours/sem.
The preparation for a test: 15.00 hours/sem.
contact hours: 18.00 hours/sem.
Finishing/Studying tasks: 15.00 hours/sem.
Laboratory (sem. 6) The preparation for a Laboratory: 5.00 hours/sem.
The preparation for a test: 15.00 hours/sem.
contact hours: 18.00 hours/sem.
Finishing/Making the report: 15.00 hours/sem.
Advice (sem. 6) The preparation for Advice: 2.00 hours/sem.
The participation in Advice: 2.00 hours/sem.
Exam (sem. 6) The preparation for an Exam: 30.00 hours/sem.
The written exam: 2.00 hours/sem.
Project/Seminar (sem. 7) contact hours: 9.00 hours/sem..
Doing the project/report/ Keeping records: 15.00 hours/sem.
Advice (sem. 7) The preparation for Advice: 2.00 hours/sem.
The participation in Advice: 2.00 hours/sem.
Credit (sem. 7) The written credit: 2.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture Lecture: Completion of the course based on an evaluation of the exam - OW
Class Classes: completion on the basis of the evaluation of the test - OC
Laboratory Laboratory: on the basis of the performed exercises and reports - OL
The final grade
Project/Seminar
The final grade Score: OK = 60%OW+20%OC+10%OL+10%OP

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : yes

Available materials :

The contents of the module are associated with the research profile: yes

1 M. Przywara; R. Przywara; W. Zapała Numerical Investigation on Flowability of Pulverized Biomass Using the Swelling Bed Model 2024
2 A. Bukowska; T. Galek; M. Przywara; R. Przywara; W. Zapała Brief Analysis of Selected Sorption and Physicochemical Properties of Three Different Silica-Based Adsorbents 2023
3 I. Opaliński; M. Przywara; R. Przywara; W. Zapała Mechanical Properties of Solid Biomass as Affected by Moisture Content 2023
4 M. Chutkowski; I. Opaliński; M. Przywara; R. Przywara; W. Zapała Influence of Moisture Content and Composition of Agricultural Waste with Hard Coal Mixtures on Mechanical and Rheological Properties 2023
5 M. Przywara; R. Przywara; W. Zapała Właściwości adsorpcyjne wybranych polarnych faz stacjonarnych 2023
6 Ł. Byczyński; M. Kosińska-Pezda; E. Woźnicka; L. Zapała; W. Zapała Synteza oraz badania składu i właściwości związków: 3-hydroksyflawonu, chryzyny oraz sulfonowych pochodnych chryzyny i kwercetyny z jonami Mn(II) 2023
7 L. Zapała; W. Zapała; P. Ziobrowski Studies on the retention behavior of quercetin, phenol and caffeine as test substances on selected neutral and charged Hydrophilic Interaction Liquid Chromatography stationary phases 2022
8 M. Chutkowski; J. Kamińska; M. Przywara; W. Zapała; P. Ziobrowski Studies on the Effects of Process Conditions on Separation of B1, B2 and B3 Vitamin Mixture Using HILIC and RPLC Chromatography 2022
9 M. Chutkowski; M. Przywara; R. Przywara; W. Zapała Column Testing in Quantitative Determination of Raw Heparin in Porcine Intestinal Mucus Extracts by Liquid Chromatography – Preliminary Investigations 2022
10 M. Kosińska-Pezda; U. Maciołek; E. Woźnicka; L. Zapała; W. Zapała Synteza, badania składu i właściwości spektroskopowych kompleksów wybranych jonów metali przejściowych z kwasem niflumowym 2022
11 W. Zapała; P. Ziobrowski Analiza mechanizmu retencji kofeiny, kwercetyny oraz fenolu w wybranych układach chromatografii oddziaływań hydrofilowych (HILIC) 2022
12 M. Chutkowski; L. Zapała; W. Zapała; P. Ziobrowski Analiza mechanizmu retencji kwercetyny w wybranych układach chromatografii oddziaływań hydrofilowych (HILIC) 2021
13 M. Chutkowski; M. Kosińska-Pezda; M. Przywara; L. Zapała; W. Zapała; P. Ziobrowski Analysis of adsorption energy distribution in selected hydrophilic-interaction chromatography systems with amide, amine, and zwitterionic stationary phases 2021
14 Ł. Byczyński; E. Ciszkowicz; M. Kosińska-Pezda; K. Lecka-Szlachta; U. Maciołek; E. Woźnicka; L. Zapała; W. Zapała Green synthesis of niflumic acid complexes with some transition metal ions (Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II)). Spectroscopic, thermoanalytical and antibacterial studies 2021
15 Ł. Byczyński; M. Kosińska-Pezda; U. Maciołek; E. Woźnicka; L. Zapała; W. Zapała Thermal study, temperature diffraction patterns and evolved gas analysis during pyrolysis and oxidative decomposition of novel ternary complexes of light lanthanides with mefenamic acid and 1,10-phenanthroline 2021
16 M. Chutkowski; L. Zapała; W. Zapała; P. Ziobrowski Influence of Mobile Phase Composition and Temperature on the Retention Behavior of Selected Test Substances in Diol-type Column 2020
17 M. Chutkowski; M. Przywara; W. Zapała Modelowanie i analiza płynięcia materiału rozdrobionego podczas ścinania w reometrze pierścieniowym z wykorzystaniem metody elementów dyskretnych 2020
18 M. Kosińska; E. Woźnicka; L. Zapała; W. Zapała Response of the DFT study to the calculations of selected microdissociation constants of anthranilic acid and its derivatives 2019
19 Ł. Byczyński; M. Chutkowski; E. Ciszkowicz; M. Kosińska; K. Lecka-Szlachta; E. Woźnicka; L. Zapała; W. Zapała Comparison of spectral and thermal properties and antibacterial activity of new binary and ternary complexes of Sm(III), Eu(III) and Gd (III) ions with N-phenylanthranilic acid and 1,10-phenanthroline 2019