tttttt
Strona: 1

Podstawowe informacje o zajęciach

Nazwa zajęć: Topologia (przestrzeni euklidesowych)

Cykl kształcenia: 2018/2019

Nazwa jednostki prowadzącej studia: Wydział Matematyki i Fizyki Stosowanej

Nazwa kierunku studiów: Matematyka

Obszar kształcenia: nauki ścisłe

Profil studiów: ogólnoakademicki

Poziom studiów: pierwszego stopnia

Forma studiów: stacjonarne

Specjalności na kierunku: zastosowania matematyki w ekonomii, Zastosowania matematyki w informatyce

Tytuł otrzymywany po ukończeniu studiów: licencjat

Nazwa jednostki prowadzącej zajęcia: Katedra Analizy Nieliniowej

Kod zajęć: 4081

Status zajęć: obowiązkowy dla programu zastosowania matematyki w ekonomii, Zastosowania matematyki w informatyce

Układ zajęć w planie studiów: sem: 3 / W30 C30 / 5 ECTS / E

Język wykładowy: polski

Imię i nazwisko koordynatora: prof. dr hab. Dov Bronisław Wajnryb

Dane kontaktowe koordynatora: budynek L, pokój 108, tel. 178651302, dwajnryb@prz.edu.pl

Terminy konsultacji koordynatora: Pon. 12:15 - 13:45 Sro. 10:30 - 12:00

Pozostałe osoby prowadzące zajęcia

semestr 3: dr Janusz Dronka , termin konsultacji środa 12:15 - 13:45 pokój L - 108 e czwartek 10:30 - 12 pokój L - 108 e

Strona: 2

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Nauczyć podstawowych pojęć z topologii przestrzeni metrycznych i ich własności. Metryka, zbiory otwarte i domknięte, ciągi, przestrzenie zupełne, spójne, zwarte. Funkcje ciągłe i ich własności.

Ogólne informacje o zajęciach kształcenia: studia stacjonarne, semestr III, W - 30, C - 30, kończy się egzaminem

Wykaz literatury, wymaganej do zaliczenia zajęć

Literatura wykorzystywana podczas zajęć wykładowych

  1. K. Kuratowski, , Wstęp do teorii mnogości i topologii, , PWN, Warszawa ., 2004

Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych

  1. . R. Engelking, K. Sieklucki, Wstęp do topologii, PWN, Warszawa., 1986

Literatura do samodzielnego studiowania

  1. . R. Duda, , PWN, Warszawa 1986., Wprowadzenie do topologii. Część I: Topologia ogólna, PWN, Warszawa ., 1986
Strona: 3

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Student spełnia wymagania formalne określone w regulaminie studiów

Wymagania wstępne w kategorii Wiedzy: zbiory przeliczalne i nieprzeliczalne, działania na zbiorach, implikacja i jej zaprzeczenie, funkcje i relacje, granica ciągu, granica i ciągłość funkcji jednej i dwóch zmiennych.

Wymagania wstępne w kategorii Umiejętności: Student potrafi obliczyć granicę prostych ciągów, sprawdzić czy ciąg dąży do nieskończoności, policzyć granicę funkcji, znaleźć część wspólną i sumę zbiorów.

Wymagania wstępne w kategorii Kompetencji społecznych: Potrafi odpowiednio określić priorytety służące realizacji określonego, przez siebie lub innych, zadania.

Strona: 4

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Sposoby weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z OEK
01. Zna podstawowe pojęcia topologii: przestrzeń metryczna, zbiory otwarte i domknięte, zbiór gęsty, brzeg i wnętrze zbioru, punkt skupienia Wykłady i ćwiczenia Odpytywanie przy tablicy w czasie ćwiczeń Zadania do rozwiązania na kolokwium, w tym pytania teoretyczne - definicje, sformułowania twierdzeń Podobne pytania praktyczne i teoretyczne na egzaminie K_W01+
K_W06+
K_U23+
X1A_W1
02. Zna pojęcia przestrzeni zupełnej, spójnej, zwartej, ośrodkowej i ich własności Wyklady i ćwiczenia Odpytywanie przy tablicy w czasie ćwiczeń Zadania do rozwiązania na kolokwium, w tym pytania teoretyczne - definicje, sformułowania twierdzeń Podobne pytania praktyczne i teoretyczne na egzaminie K_U23+
03. Zna pojęcie funkcji ciągłej, zna podstawowe własności funkcji ciągłych, zna twierdzenia o funkcjach ciągłych na przestrzeni zwartej. Wykłady i ćwiczenia Odpytywanie przy tablicy w czasie ćwiczeń Zadania do rozwiązania na kolokwium, w tym pytania teoretyczne - definicje, sformułowania twierdzeń Podobne pytania praktyczne i teoretyczne na egzaminie K_W03+
K_W04++
K_U23+
X1A_W2
X1A_W3
04. Potrafi udowodnić proste własności i twierdzenia, np: ciąg zbieżny jest ograniczony, suma dwóch zbiorów domkniętych jest domknięta, podzbiór zwarty jest domknięty. Wykłady i ćwiczenia Odpytywanie przy tablicy w czasie ćwiczeń Zadania do rozwiązania na kolokwium, w tym dowody prostych twierdzeń. Podobne zadania praktyczne i teoretyczne na egzaminie. K_W02++
K_W05++
K_U06++
K_U24+
X1A_W3
X1A_U1

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Strona: 5

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
3 TK01 1. Pojęcie przestrzeni metrycznej – przykłady. 2. Kula,zbiory otwarte, punkty wewnętrzne i brzegowe zbioru. 3. Zbiory domknięte, domknięcie zbioru, własności. 4. Podprzestrzeń metryczna, zbiory otwarte i domknięte w podprzestrzeni. 5. Iloczyn kartezjański przestrzeni metrycznych. 6. Ciąg punktów, ciągi zbieżne, własności. W01 - W05 , C01 - C05 MEK01 MEK04
3 TK02 7. Przekształcenia przestrzeni metrycznych, przekształcenia ciągłe, homeomorfizm, przekształcenia (funkcje) ciągłe jednostajnie. 8. Przestrzenie metryczne zwarte, warunki równoważne, własności funkcji ciągłych na przestrzeniach zwartych. W06 - W10 , C06 - C10 MEK03
3 TK03 9. Ciągi Cauchy, przestrzenie zupełne, Twierdzenia: Cantora, Baire’a i Banacha. 10. Przestrzenie spójne, składowa spójności, przestrzenie łukowo spójne. 11. Pojęcie przestrzeni topologicznej, przestrzenie Hausdorffa. W11 - W15 , C11 - C15 MEK02 MEK04
Strona: 6

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład
(sem. 3)

Przygotowanie do kolokwium: 5.00 godz./sem.

Godziny kontaktowe: 30.00 godz./sem.

Uzupełnienie/studiowanie notatek: 15.00 godz./sem.

Studiowanie zalecanej literatury: 5.00 godz./sem.

Ćwiczenia/Lektorat
(sem. 3)

Przygotowanie do ćwiczeń: 6.00 godz./sem.

Przygotowanie do kolokwium: 6.00 godz./sem.

Godziny kontaktowe: 30.00 godz./sem.

Dokończenia/studiowanie zadań: 3.00 godz./sem.

Inne: 7.00 godz./sem.

Konsultacje
(sem. 3)

Przygotowanie do konsultacji: 3.00 godz./sem.

Udział w konsultacjach: 3.00 godz./sem.

Egzamin
(sem. 3)

Przygotowanie do egzaminu: 10.00 godz./sem.

Egzamin pisemny: 2.00 godz./sem.

Strona: 7

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Nie ma oceny z wykładu.
Ćwiczenia/Lektorat Zaliczenie ćwiczeń na podstawie ocen z dwóch kolokwiów. W sytuacji granicznej aktywność na ćwiczeniach może "przeważyć szalę".
Ocena końcowa Ocena końcowa na podstawie egzaminu pisemnego. Warunkiem przystąpienia do egzaminu jest zaliczenie ćwiczeń. W sytuacji granicznej dobra ocena z ćwiczeń lub kilka pytań ustnych może przeważyć szalę o pół stopnia.
Strona: 8

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia ExamTop2011.pdf
ExamTopKomis2010.pdf
Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych koloTopZal2009.pdf
koloIITop2011.pdf
Inne

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych: nie

Strona: 9

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: nie