logo
Karta przedmiotu
logo

Czynnik ludzki w lotnictwie

Podstawowe informacje o zajęciach

Cykl kształcenia: 2021/2022

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Lotnictwo i kosmonautyka

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: drugiego stopnia

Forma studiów: stacjonarne

Specjalności na kierunku: Awionika, Pilotaż, Samoloty, Silniki lotnicze

Tytuł otrzymywany po ukończeniu studiów: magister inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Awioniki i Sterowania

Kod zajęć: 3124

Status zajęć: obowiązkowy dla specjalności Pilotaż

Układ zajęć w planie studiów: sem: 1 / W15 C15 / 2 ECTS / Z

Język wykładowy: polski

Imię i nazwisko koordynatora 1: mgr inż. Paweł Jażdżewski

Imię i nazwisko koordynatora 2: mgr inż. Maciej Pruchniak

Imię i nazwisko koordynatora 3: prof. dr hab. inż. Tomasz Rogalski

semestr 1: dr inż. Grzegorz Drupka

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Celem kształcenia jest zapoznanie się z ograniczeniami oraz możliwościami człowieka w roli pilota.

Ogólne informacje o zajęciach: Cele kształcenia realizowane są w ramach zajęć prowadzonych w formie wykładu oraz ćwiczeń.

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Steve Peters The Chimp Paradox . 2012
2 E. Bruce Goldstein Cognitive Psychology: Connecting Mind, Research and Everyday Experience . 2014

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Student ma być zarejestrowany na I semestrze studiów stacjonarnych II-iego stopnia na kierunku Lotnictwo i Kosmonautyka, specjalność Pilotaż

Wymagania wstępne w kategorii Wiedzy: Student powinien posiadać wiedzę w zakresie lotnictwa

Wymagania wstępne w kategorii Umiejętności: Student powinien posiadać umiejętności zdobywania wiedzy z materiałów źródłowych.

Wymagania wstępne w kategorii Kompetencji społecznych: Student powinien posiadać umiejętność współpracy w małym zespole.

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK
01 Student potrafi rozpoznać możliwości i ograniczenia człowieka w odniesieniu do wykonywania zawodu pilota. wykład, ćwiczenia problemowe obserwacja wykonawstwa K_W09+
P7S_WK

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
1 TK01 040 03 00 00 Podstawy psychologii lotniczej Przewodzenie i podporządkowanie: Cechy przywódcy Typy przywództwa Cechy efektywnego przywódcy Nieefektywność przywódcy – cechy Role członków załogi w kokpicie Rodzaje współpracy w kokpicie Powstawanie błędów: Sposób powstawania błędu Łańcuch błędów Poziomy błędów Wpływ grupy Automatyzacja: Cele Problemy Wymagania operacyjne Zadania załogi Proces uczenia się: Cykle i formy uczenia się CRM: Wstęp do CRM Cele szkoleń CRM W1-15, C1-15 MEK01

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 1) Godziny kontaktowe: 15.00 godz./sem.
Ćwiczenia/Lektorat (sem. 1) Godziny kontaktowe: 15.00 godz./sem.
Konsultacje (sem. 1)
Zaliczenie (sem. 1) Przygotowanie do zaliczenia: 20.00 godz./sem.
Zaliczenie pisemne: 1.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Nie jest oceniany
Ćwiczenia/Lektorat Całkowita obserwacja wykonawstwa
Ocena końcowa tj ocena z ćwiczeń

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 G. Drupka; T. Rogalski; Ł. Wałek Analiza zmian w ruchu lotniczym na przykładzie wybranych rejonów FIR europejskiej przestrzeni powietrznej po wystąpieniu konfliktu zbrojnego na terytorium Ukrainy 2024
2 G. Drupka; T. Rogalski; Ł. Wałek Metody wyznaczania pozycji bezzałogowego statku powietrznego na pasie w fazie startu 2024
3 M. Dojka; K. Jakubik; T. Rogalski; Ł. Wałek Automatic take-off control system 2023
4 M. Korkosz; S. Noga; T. Rogalski Analysis of the mechanical limitations of the selected high-speed electric motor 2023
5 S. Noga; D. Nowak; T. Rogalski; P. Rzucidło The use of vision system to determine lateral deviation from landing trajectory 2023
6 T. Rogalski Transport lotniczy w obliczu wyzwań XXI wieku 2023
7 D. Kordos; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego kołującego po płycie lotniskowej oraz sposób sterowania kołowaniem statku powietrznego z wykorzystaniem tego systemu 2022
8 G. Kopecki; D. Kordos; D. Nowak; T. Rogalski The PAPI Lights-Based Vision System for Aircraft Automatic Control during Approach and Landing 2022
9 K. Doerffer; P. Doerffer; P. Dymora; P. Flaszynski; S. Grigg; M. Jurek; D. Kordos; B. Kowal; M. Mazurek; T. Rogalski; R. Śliwa; R. Unnthorsson The Latest Advances in Wireless Communication in Aviation, Wind Turbines and Bridges 2022
10 T. Rogalski; P. Rzucidło; P. Szwed Estimation of Atmospheric Gusts Using Integrated On-Board Systems of a Jet Transport Airplane - Flight Simulations 2022
11 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski Design advancements for an integrated mission management system for small air transport vehicles in the COAST project 2022
12 B. Brukarczyk; P. Kot; D. Nowak; T. Rogalski; P. Rzucidło Fixed Wing Aircraft Automatic Landing with the Use of a Dedicated Ground Sign System 2021
13 G. Dec; A. Majka; T. Rogalski; D. Rzońca; S. Samolej Regular graph-based free route flight planning approach 2021
14 G. Jaromi; T. Kapuściński; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba In-Flight Tests of Intruder Detection Vision System 2021
15 J. Beran; V. Di Vito; P. Grzybowski; T. Kabrt; P. Masłowski; M. Montesarchio; T. Rogalski Flight management enabling technologies for single pilot operations in Small Air Transport vehicles in the COAST project 2021
16 K. Czerwińska; D. Jaworski; A. Pacana; M. Pruchniak; Ł. Wałek Analiza i zastosowanie controlingu produkcji metodą ABC/XYZ w branży automotive 2021
17 K. Maciejowska; S. Noga; T. Rogalski Vibration analysis of an aviation engine turbine shaft shield 2021
18 P. Bąk; T. Rogalski; P. Rzucidło; J. Szura; K. Warzocha Transformative Use of Additive Technology in Design and Manufacture of Hydraulic Actuator for Fly-by-Wire System 2021
19 S. Noga; J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in an Immelmann manoeuvre 2021
20 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski A concept for an Integrated Mission Management System for Small Air Transport vehicles in the COAST project 2021
21 W. Frącz; G. Janowski; M. Pruchniak; Ł. Wałek The Use of Computed Tomography in the Study of Microstructure of Molded Pieces Made of Poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) Biocomposites with Natural Fiber 2021
22 G. Drupka; A. Majka; T. Rogalski Automated flight planning method to facilitate the route planning process in predicted conditions 2020
23 G. Jaromi; D. Kordos; A. Paw; T. Rogalski; P. Rzucidło; P. Szczerba Simulation studies of a vision intruder detection system 2020
24 J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in a spin maneuver 2020
25 T. Kapuściński; T. Rogalski; P. Rzucidło; P. Szczerba; Z. Szczerba A Vision-Based Method for Determining Aircraft State during Spin Recovery 2020
26 D. Nowak; T. Rogalski; D. Rzońca; S. Samolej; Ł. Wałek Control System for Aircraft Take-off and Landing Based on Modified PID controllers 2019
27 G. Drupka; T. Rogalski Free Route Airspace-nowe regulacje przestrzeni powietrznej 2019
28 G. Jaromi; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba Wybrane elementy badań wizyjnego układu antykolizyjnego dla lekkich oraz bezzałogowych statków powietrznych 2019
29 J. Prusik; T. Rogalski Sterowanie trajektorią podczas lotu akrobacyjnego 2019
30 S. Pluta; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego znajdującego się na płycie lotniskowej 2019