logo
Karta przedmiotu
logo

Pokładowe systemy sterowania

Podstawowe informacje o zajęciach

Cykl kształcenia: 2021/2022

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Lotnictwo i kosmonautyka

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: pierwszego stopnia

Forma studiów: stacjonarne

Specjalności na kierunku: Awionika, Pilotaż, Samoloty, Silniki lotnicze, Zarządzanie ruchem lotniczym

Tytuł otrzymywany po ukończeniu studiów: inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Awioniki i Sterowania

Kod zajęć: 2838

Status zajęć: obowiązkowy dla specjalności Pilotaż

Układ zajęć w planie studiów: sem: 7 / W30 L15 / 4 ECTS / E

Język wykładowy: polski

Imię i nazwisko koordynatora: prof. dr hab. inż. Tomasz Rogalski

Terminy konsultacji koordynatora: wtorki 7.00 - 8.30

semestr 7: dr hab. inż. prof. PRz Grzegorz Kopecki

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Poznanie zasad działania oraz sposobu użytkowania pokładowych systemów sterowania samolotami.

Ogólne informacje o zajęciach: W trakcie zajęć studenci poznają systemy automatycznego sterowania samolotem, systemy sterowania wspomaganego, a także zasady posługiwania się wybranymi urządzeniami pokładowymi.

Materiały dydaktyczne: Instrukcje do ćwiczeń laboratoryjnych, Materiały pomocnicze (schematy, wykresy)

Inne: Czasopisma: Professional Pilot, Avionics

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 S. Bociek, J. Gruszecki Układy sterowania automatycznego samolotem. Oficyna PRz. 1999
2 Anon. JAA/ATPL Theretical Knowledge Manual. Oxford Aviation Training, 022 02 Automatic Flight Control Syst Oxford, Jeppesen. 2005
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 S. Bociek, J. Gruszecki Układy sterowania automatycznego samolotem Oficyna PRz. 1999
Literatura do samodzielnego studiowania
1 J. Domicz , L. Szutowski Podręcznik pilota samolotowego Technika, Poznań. 2006

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Zaliczony przedmiot "Podstawy automatyki"

Wymagania wstępne w kategorii Wiedzy: Znajomość zasad automatycznego sterowania oraz podstaw rachunku operatorowego

Wymagania wstępne w kategorii Umiejętności: Umiejętność analizowania schematów blokowych i analizy właściwości układów automatycznego sterowania

Wymagania wstępne w kategorii Kompetencji społecznych: Umiejętność pracy w zespole (laboratorium)

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK
01 Student rozumie zasadę działania urządzeń automatycznego sterowania wykład egzamin cz. pisemna K_W10++
K_U09+
P6S_UW
P6S_WG
02 Student potrafi interpretować sygnalizacje oraz posługiwać się poznanym systemem automatycznego sterowania samolotem korzystając z jego dokumentacji eksploatacyjnej wykład egzamin cz. pisemna K_W10+++
P6S_WG
03 Student potrafi zamodelować prosty układ automatycznego sterowania oraz zinterpretować wyniki eksperymentu laboratorium obserwacja wykonawstwa K_U07++
K_U08+
K_U16+
P6S_UO
P6S_UW
04 Posiada wiedzę zgodna z PART FCL w zakresie licencji ATPL wykład, wykład interaktywny, wykład problemowy do wyboru przez prowadzacego test pisemny,egzamin cz. ustna,egzamin cz. pisemna K_W10+
K_U08+
P6S_UW
P6S_WG

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
7 TK01 Wykład: Klasyfikacja, przeznaczenie i funkcje pokładowych systemów sterowania. Wymagania stawiane pokładowym systemom sterowania samolotem. Model matematyczny samolotu jako obiektu sterowania: założenia, uproszczenia, zakres zastosowań. Struktura układów automatycznego sterowania samolotem: elementy składowe, właściwości, ogólne zasady syntezy właściwości układów automatycznego sterowania samolotem, kryteria, metody. Rodzaje autopilotów (klasyfikacja): wymagania, właściwości. Automatyczna stabilizacja kąta pochylenia i kąta przechylenia samolotu: schemat blokowy, przykładowe prawa sterowania, właściwości. Automatyczna stabilizacja wysokości lotu i kursu samolotu: schemat blokowy, przykładowe prawa sterowania, właściwości. Automatyczne sterowanie wg sygnałów odbiornika VOR oraz ILS: schemat blokowy, prawa sterowania, właściwości. Rodzaje i zakres zastosowań układów wspomagających sterowanie ręczne samolotem, wymagania stawiane urządzeniom wspomagającym sterowanie ręczne. Pilot-operator w układzie sterowania: model matematyczny, właściwości, ograniczenia. Kryteria oceny stateczności i sterowności samolotu w ruchu podłużnym i ruchu bocznym; przykłady (skala Coopera-Harpera), interpretacja. Zastosowanie wzmacniaczy siły (np. hydraulicznych) w układach ręcznego sterowania: schemat, zasadnicze właściwości, funkcje. Podsystemy układu sterowania wspomaganego: tłumiki oscylacji kątowych samolotu, automat stateczności podłużnej i stateczności bocznej, automat regulacji sterowności, automaty trymerowania; wpływ parametrów układów na właściwości pilotażowe samolotu. W01 - W30 MEK01 MEK02
7 TK02 Ćwiczenia laboratoryjne (7 wybranych ćwiczeń po 2 godziny): 1. Ruch podłużny samolotu - modele i symulacja 2. Ruch boczny (niesymetryczny) samolotu - modele i symulacja 3. Dobór parametrów tłumika pochylania 4. Dobór parametrów tłumika holendrowania 5. Autopilot - sterowanie pochyleniem i stabilizacja wysokości 6. Autopilot - sterowanie przechyleniem i stabilizacja kursu 7. Sterowanie automatyczne podczas podejścia do lądowania 8. Badanie właściwości cyfrowego autopilota APC-1P 9. Modelowanie odległościowego układu ręcznego sterowania samolotem 10. Ocena właściwości pilotażowych samolotu L01 - L15 MEK03
7 TK03 Treści zgodne z PART FCL dla licencji ATPL (A) 021.05.01.00 Aeroplane: primary flight controls 021.05.01.01 Definition and control surfaces 021.05.01.01.01 Define a ‘primary flight control’. 021.05.01.01.02 List the following primary flight control surfaces: elevator, aileron, roll spoilers, flaperon; rudder. 021.05.01.01.03 List the various means of control surface actuation including: manual; fully powered (irreversible); partially powered (reversible). 021.05.01.02 Manual controls 021.05.01.02.01 Explain the basic principle of a fully manual control system. 021.05.01.03 Fully powered controls (irreversible) 021.05.01.03.01 Explain the basic principle of a fully powered control system. 021.05.01.03.02 Explain the concept of irreversibility in a flight control system. 021.05.01.03.03 Explain the need for a ‘feel system’ in a fully powered control system. 021.05.01.03.04 Explain the operating principle of a stabiliser trim system in a fully powered control system. 021.05.01.03.05 Explain the operating principle of rudder and aileron trim in a fully powered control system. 021.05.01.04 Partially powered controls (reversible) 021.05.01.04.01 Explain the basic principle of a partially powered control system. 021.05.01.04.02 Explain why a ‘feel system’ is not necessary in a partially powered control system. 021.05.01.05 System components, design, operation, indications and warnings, degraded modes of operation, jamming 021.05.01.05.01 List and describe the function of the following components of a flight control system: actuators; control valves; cables; electrical wiring; control surface position sensors. 021.05.01.05.02 Explain how redundancy is obtained in primary flight control systems of large transport aeroplanes. 021.05.01.05.03 Explain the danger of control jamming and the means of retaining sufficient control capability. 021.05.01.05.04 Explain the methods of locking the controls on the ground and describe ‘gust or control lock’ warnings. 021.05.01.05.05 Explain the concept of a rudder deflection limitation (rudder limiter) system and the various means of implementation (rudder ratio changer, variable stops, blow-back). 021.05.02.00 Aeroplane: secondary flight controls 021.05.02.01 System components, design, operation, degraded modes of operation, indications and warnings 021.05.02.01.01 Define a ‘secondary flight control’. 021.05.02.01.02 List the following secondary flight control surfaces: lift-augmentation devices (flaps and slats); speed brakes; flight and ground spoilers; trimming devices such as trim tabs, trimmable horizontal stabiliser. 021.05.02.01.03 Describe secondary flight control actuation methods and sources of actuating power. 021.05.02.01.04 Explain the function of a mechanical lock when using hydraulic motors driving a screw jack. 021.05.02.01.05 Describe the requirement for limiting flight speeds for the various secondary flight control surfaces. 021.05.02.01.06 For lift-augmentation devices, explain the load-limiting (relief) protection devices and the functioning of an auto-retraction system. 021.05.02.01.07 Explain how a flap/slat asymmetry protection device functions, and describe the implications of a flap/slat asymmetry situation. 021.05.02.01.08 Describe the function of an auto-slat system. 021.05.02.01.09 Explain the concept of control surface blow-back (aerodynamic forces overruling hydraulic forces). 021.05.04.00 Aeroplane: fly-by-wire (FBW) control systems 021.05.04.01 Composition, explanation of operation, modes of operation 021.05.04.01.01 Explain that an FBW flight control system is composed of the following: pilot’s input command (control column/sidestick/rudder pedals); electrical signalling paths, including: pilot input to computer, computer to flight control surfaces, feedback from aircraft response to computer; flight control computers; actuators; flight control surfaces. 021.05.04.01.02 State the advantages of an FBW system in comparison with a conventional flight control system including: weight; pilot workload; flight-envelope protection. 021.05.04.01.03 Explain why an FBW system is always irreversible. 021.05.04.01.04 Explain the different modes of operation: normal operation (e.g. normal law or normal mode); downgraded operation (e.g. alternate law or secondary mode); direct law. 021.05.04.01.05 Describe the implications of mode degradation in relation to pilot workload and flight-envelope protection. 021.05.04.01.07 For aircraft using sidestick for manual control, describe the implications of: dual control input made by the pilot; the control takeover facility available to the pilot. 021.05.04.01.09 Explain why several types of computers are needed and why they should be dissimilar. 021.05.04.01.10 Explain why several control surfaces on every axis are needed on FBW aircraft. 021.05.04.01.11 Explain why several sensors are needed on critical parameters. 022.06.01.00 General 022.06.01.01 Definitions and control loops 022.06.01.01.01 Describe the following purposes of an automatic flight control system (AFCS): enhancement of flight controls; reduction of pilot workload. 022.06.01.01.02 Define and explain the following two functions of an AFCS: aircraft control: stabilise the aircraft around its centre of gravity (CG); aircraft guidance: guidance of the aircraft’s flight path. 022.06.01.01.03 Describe the following two automatic control principles: closed loop, where a feedback from an action or state is compared to the desired action or state; open loop, where there is no feedback loop. 022.06.01.01.04 List the following elements of a closed-loop control system and explain their basic function: input signal; error detector; signal processor providing a measured output signal according to set criteria or laws; control element such as an actuator; feedback signal to error detector for comparison with input signal. 022.06.01.01.05 Describe how a closed-loop system may enter a state of self-induced oscillation if the system overcompensates for deviations from the desired state. 022.06.01.01.06 Explain how a state of self-induced oscillations may be detected and describe the effects of self-induced oscillations: aircraft controllability; aircraft safety; timely manual intervention as a way of mitigating loss of control; techniques that may be used to maintain positive control of the aircraft. 022.06.02.00 Autopilot system 022.06.02.01 Design and operation 022.06.02.01.01 Define the three basic control channels. 022.06.02.01.02 Define the three different types of autopilots: single or 1 axis (roll); 2 axes (pith and roll); 3 axes (pitch, roll and yaw); 022.06.02.01.03 Describe the purpose of the following components of an autopilot system: flight control unit (FCU), mode control panel (MCP) or equivalent; flight mode annunciator (FMA) (see Subject 022 06 04 00); autopilot computer; actuator. 022.06.02.01.04 Explain the following lateral modes: heading (HDG)/track (TRK); VOR (VOR)/localiser (LOC); lateral navigation/managed navigation (LNAV or NAV). 022.06.02.01.05 Describe the purpose of control laws for pitch and roll modes. 022.06.02.01.06 Explain the following vertical modes: vertical speed (V/S); flight path angle (FPA); level change (LVL CHG)/open climb (OP CLB) or open descent (OP DES); speed reference system (SRS); altitude (ALT) hold; vertical navigation (VNAV)/managed climb (CLB) or descent (DES); glideslope (G/S). 022.06.02.01.07 Describe how the autopilot uses speed, aircraft configuration or flight phase as a measure for the magnitude of control inputs and how this may affect precision and stability. 022.06.02.01.08 Explain the following mixed modes: take-off; go-around; approach (APP). 022.06.02.01.09 Describe the two types of autopilot configurations and explain the implications to the pilot for either and when comparing the two principles: flight-deck controls move with the control surface when the autopilot is engaged; flight-deck controls remain static when the autopilot is engaged. 022.06.02.01.10 Describe the purpose of the following inputs and outputs for an autopilot system: attitude information; flight path/trajectory information; control surface position information; airspeed information; aircraft configuration information; FCU/MCP selections; FMAs. 022.06.02.01.11 Describe the purpose of the synchronisation function when engaging the autopilot and explain why the autopilot should be engaged when the aircraft is in trim. 022.06.02.01.12 Define the control wheel steering (CWS) mode as manual manoeuvring of the aircraft through the autopilot computer and autopilot servos/actuators using the control column/control wheel. 022.06.02.01.13 Describe the following elements of CWS: CWS as an autopilot mode; flight phases where CWS cannot be used; whether the pilot or the autopilot is controlling the flight path; the availability of flight path/performance protections; potential different feel and control response compared to manual flight. 022.06.02.01.14 Describe touch control steering (TCS) and highlight the differences when compared to CWS: autopilot remains engaged but autopilot servos/actuators are disconnected from the control surfaces; manual control of the aircraft as long as TCS button is depressed; autopilot servos/actuators reconnect when TCS button is released and the autopilot returns to previously engaged mode(s). 022.06.02.01.15 Explain that only one autopilot may be engaged at any time except for when APP is armed in order to facilitate a fail-operational autoland. 022.06.02.01.16 Explain the difference between an armed and an engaged mode: not all modes have an armed state available; a mode will only become armed if certain criteria are met; an armed mode will become engaged (replacing the previously engaged mode, if any) when certain criteria are met. 022.06.02.01.17 Describe the sequence of events when a mode is engaged and the different phases: initial phase where attitude is changed to obtain a new trajectory in order to achieve the new parameter; the trajectory will be based on rate of closure which is again based on the difference between the original parameter and the new parameter; capture phase where the aircraft will follow a predefined rate of change of trajectory to achieve the new parameter without overshooting/ undershooting; tracking or hold phase where the aircraft will maintain the set parameter until a new change has been initiated. 022.06.02.01.18 Explain automatic mode reversion and typical situations where it may occur: no suitable data for the current mode such as flight plan discontinuity when in LNAV/managed NAV; change of parameter during capture phase for original parameter such as change of altitude target during ALT ACQ/ALT*; mismanagement of a mode resulting in engagement of the autopilot envelope protection, e.g. selecting excessive V/S resulting in a loss of speed control. 022.06.02.01.19 Explain the dangers of mismanagement of the following modes: use of V/S and lack of speed protection, i.e. excessive V/S or FPA may be selected with subsequent uncontrolled loss or gain of airspeed; arming VOR/LOC or APP outside the protected area of the localiser or ILS. 022.06.02.01.20 Describe how failure of other systems may influence the availability of the autopilot and how incorrect data from other systems may result in an undesirable aircraft state, potentially without any failure indications. Explain the importance of prompt and appropriate pilot intervention during such events. 022.06.02.01.21 Explain an appropriate procedure for disengaging the autopilot and why both aural and visual warnings are used to indicate that the autopilot is being disengaged: temporary warning for intended disengagement using the design method; continuous warning for unintended disengagement or using a method other than the design method. 022.06.02.01.22 Explain the following regarding autopilot and aircraft with manual trim: the autopilot may not engage unless the aircraft controls are in trim; the aircraft will normally be in trim when the autopilot is disconnected; use of manual trim when the autopilot is engaged will normally lead to autopilot disconnection and a risk of an out-of-trim situation. 022.06.03.00 Flight director: design and operation 022.06.03.01 Purpose, use, indications, modes, data 022.06.03.01.01 Explain the purpose of a flight director system. 022.06.03.01.02 Describe the different types of display: pitch and roll crossbars; V-bar. 022.06.03.01.03 "Explain the differences between a flight director and an autopilot and how the flight director provides a means of cross-checking the control/guidance commands sent to the autopilot." 022.06.03.01.04 Explain why the flight director must be followed when engaged/shown, and describe the appropriate use of the flight director: flight director only; autopilot only; flight director and autopilot; typical job-share between pilots (pilot flying (PF)/pilot monitoring (PM)) for selecting the parameters when autopilot is engaged versus disengaged; highlight when the flight director should not be followed or should be disengaged.. 022.06.03.01.05 Give examples of different scenarios and the resulting flight director indications. 022.06.03.01.06 Explain that the flight director computes and indicates the direction and magnitude of control inputs required in order to achieve an attitude to follow a trajectory. 022.06.03.01.07 Explain how the modes available for the flight director are the same as those available for the autopilot, and that the same panel (FCU/MCP) is normally used for selection. 022.06.03.01.08 Explain the importance of checking the FMC data or selected autopilot modes through the FMA when using the flight directors. If the flight directors are showing incorrect guidance, they should not be followed and should be turned off. 022.06.04.00 Aeroplane: flight mode annunciator (FMA) 022.06.04.01 Purpose, modes, display scenarios 022.06.04.01.01 Explain the purpose of FMAs and their importance being the only indication of the state of a system rather than a switch position. 022.06.04.01.02 Describe where the FMAs are normally shown and how the FMAs will be divided into sections (as applicable to aircraft complexity): vertical modes; lateral modes; autothrust modes; autopilot and flight director annunciators; landing capability. 022.06.04.01.03 Explain why FMAs for engaged or armed modes have different colour or different font size. 022.06.04.01.04 Describe the following FMA display scenarios: engagement of a mode; mode change from armed to becoming engaged; mode reversion. 022.06.04.01.05 Explain the importance of monitoring the FMAs and announcing mode changes at all times (including when selecting a new mode) and why only certain mode changes will be accompanied by an aural notification or additional visual cues. 022.06.04.01.06 Describe the consequences of not understanding what the FMAs imply or missing mode changes, and how it may lead to an undesirable aircraft state. 022.06.05.00 Autoland 022.06.05.01 Design and operation 022.06.05.01.01 Explain the purpose of an autoland system. 022.06.05.01.02 Explain the significance of the following components required for an autoland: autopilot; autothrust; radio altimeter; ILS receivers. 022.06.05.01.03 Explain the following terms (reference to CS-AWO ‘All Weather Operations’): fail-passive automatic landing system; fail-operational automatic landing system; fail-operational hybrid landing system; alert height. 022.06.05.01.04 Describe the autoland sequence including the following: FMAs regarding the landing capability of the aircraft; the significance of monitoring the FMAs to ensure the automatic arming/engagement of modes triggered by defined radio altitudes or other thresholds; in the event of a go-around, that the aircraft performs the go-around manoeuvre both by reading the FMAs and supporting those readings by raw data; during the landing phase, that ‘FLARE’ mode engages at the appropriate radio altitude, including typical time frame and actions if ‘FLARE’ does not engage; after landing, that ‘ROLL-OUT’ mode engages and the significance of disconnecting the autopilot prior to vacating the runway. 022.06.05.01.05 Explain that there are operational limitations in order to legally perform an autoland beyond the technical capability of the aircraft. 022.06.05.01.06 Explain the purpose and significance of alert height, describe the indications and implications, and consider typical pilot actions for a failure situation: above the alert height; below the alert height. 022.06.05.01.07 Describe typical failures that, if occurring below the alert height, will trigger a warning: all autopilots disengage; loss of ILS signal or components thereof; excessive ILS deviations; radio-altimeter failure. 022.06.05.01.08 Describe how the failure of various systems, including systems not directly involved in the autoland process, can influence the ability to perform an autoland or affect the minima down to which the approach may be conducted. 022.06.05.01.09 Describe the fail-operational hybrid landing system as a primary fail-passive automatic landing system with a secondary independent guidance system such as a head-up display (HUD) to enable the pilot to complete a manual landing if the primary system fails. 022.08.01.00 Trim systems 022.08.01.01 Design and operation 022.08.01.01.01 Explain the purpose of the trim system and describe the layout with one trim system for each control axis, depending on the complexity of the aircraft. 022.08.01.01.02 Give examples of trim indicators and their function, and explain the significance of a ‘green band/area’ for the pitch trim. 022.08.01.01.03 Describe and explain an automatic pitch-trim system for a conventional aeroplane. 022.08.01.01.04 Describe and explain an automatic pitch-trim system for an FBW aeroplane and that it is also operating during manual flight; however, during certain phases it may be automatically disabled to alter the handling characteristics of the aircraft. 022.08.01.01.05 Describe the consequences of manual operation on the trim wheel when the automatic pitch-trim system is engaged. 022.08.01.01.06 Describe and explain the engagement and disengagement conditions of the autopilot according to trim controls. 022.08.01.01.07 Define ‘Mach trim’ and state that the Mach-trim system can be independent. 022.08.01.01.08 Describe the implications for the pilot in the event of a runaway trim or significant out-of-trim state. 022.08.02.00 Yaw damper 022.08.02.01 Design and operation 022.08.02.01.01 Explain the purpose of the yaw-damper system. 022.08.02.01.02 Explain the purpose of the Dutch-roll filter (filtering of the yaw input signal). 022.08.02.01.03 Explain the operation of a yaw-damper system and state the difference between a yaw-damper system and a 3-axis autopilot operation on the rudder channel. 022.08.03.00 Flight-envelope protection (FEP) 022.08.03.01 Purpose, input parameters, functions 022.08.03.01.01 Explain the purpose of the FEP. 022.08.03.01.02 Explain typical input parameters to the FEP: AoA; aircraft configuration; airspeed information. 022.08.03.01.03 Explain the following functions of the FEP: stall protection; overspeed protection. 022.08.03.01.04 Explain how the stall-protection function and the overspeed-protection function apply to both mechanical/conventional and FBW control systems, but other functions (e.g. pitch or bank limitation) can only apply to FBW control systems. 022.09.01.00 Autothrust system 022.09.01.01 Purpose, operation, overcompensation, speed control 022.09.01.01.01 Describe the purpose of the autothrust system and explain how the FMAs will be the only indication on active autothrust modes. 022.09.01.01.02 Explain the operation of an autothrust system with regard to the following modes: take-off/go-around (TOGA); climb or maximum continuous thrust (MCT), N1 or EPR targeted (THR CLB, THR MCT, N1, THR HOLD, EPR); speed (SPEED, MCP SPD); idle thrust (THR IDLE, RETARD/ARM); landing (RETARD, THR IDLE). 022.09.01.01.03 Describe the two main variants of autothrust systems: mode selections available on the FCU/MCP and thrust levers move with autothrust commands; mode selections made using the thrust levers which remain static during autothrust operation. 022.09.01.01.04 Explain how flight in turbulence/wind shear giving fluctuating airspeed indications may lead to the autothrust overcompensating in an oscillating manner and that manual thrust may be required to settle the airspeed. Airspeed indications/trend vectors may give an indication of appropriate thrust adjustments but any reaction should not be too aggressive. 022.09.01.01.05 Explain the threats associated with the use of autothrust resulting in the pilot losing the sense of energy awareness (e.g. speed, thrust). 022.09.01.01.06 Explain the relationship between autopilot pitch modes and autothrust modes, and how the autopilot and autothrust will interact upon selecting modes for one of the systems. 022.09.01.01.07 Explain the principles of speed control and how speed can be controlled: by varying the engine thrust; by varying the aircraft pitch. 022.09.01.01.08 Explain the potential implications on speed control when the autothrust controls speed and the autopilot pitch channel has a fixed pitch target for the following mode combinations: MCP SPD/SPEED and ALT HOLD/ALT; MCP SPD/SPEED and VSP (climb); MCP SPD/SPEED and VSP (descent). 022.09.01.01.09 Explain the potential implications on speed control when the autothrust has a fixed thrust target and the autopilot pitch channel controls speed for the following mode combinations: N1/THR CLB and LVL CHG/OP CLB; ARM/THR IDLE and LVL CHG/OP DES. 081.05.07.00 Fly-by-wire (FBW) 081.05.07.01 Control laws 081.05.07.01.01 Explain which parameters may be controlled in level flight with the pitch control law. 081.05.07.01.02 Explain the advantages of using the CG position in the FBW system 081.05.07.01.03 Explain what type of flight-degraded control laws may be available in case of failure. 081.05.07.01.04 Explain what are hard and soft protections. W01-W30 MEK04

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 7) Godziny kontaktowe: 30.00 godz./sem.
Uzupełnienie/studiowanie notatek: 10.00 godz./sem.
Studiowanie zalecanej literatury: 20.00 godz./sem.
Laboratorium (sem. 7) Przygotowanie do laboratorium: 7.00 godz./sem.
Godziny kontaktowe: 15.00 godz./sem.
Dokończenia/wykonanie sprawozdania: 7.00 godz./sem.
Konsultacje (sem. 7) Przygotowanie do konsultacji: 1.00 godz./sem.
Udział w konsultacjach: 1.00 godz./sem.
Egzamin (sem. 7) Przygotowanie do egzaminu: 25.00 godz./sem.
Egzamin pisemny: 3.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Egzamin pisemny składający się z części pisemnej i części ustnej. Ocena jest oceną średnią arytmetyczną z części ustnej i pisemnej pod warunkiem, że obie są większe od 2.0. Warunkiem dopuszczenia do egzaminu jest zaliczenie laboratorium
Laboratorium Oceniane jest przygotowanie do laboratorium, wykonanie ćwiczenia oraz rzetelność opracowania sprawozdania końcowego
Ocena końcowa Ocena końcowa jest średnią ważoną z oceny z egzaminu (z wagą 0.6) i oceny zaliczenia laboratorium (z wagą 0.4). Obie oceny muszą być pozytywne.

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 G. Drupka; T. Rogalski; Ł. Wałek Analiza zmian w ruchu lotniczym na przykładzie wybranych rejonów FIR europejskiej przestrzeni powietrznej po wystąpieniu konfliktu zbrojnego na terytorium Ukrainy 2024
2 G. Drupka; T. Rogalski; Ł. Wałek Metody wyznaczania pozycji bezzałogowego statku powietrznego na pasie w fazie startu 2024
3 M. Dojka; K. Jakubik; T. Rogalski; Ł. Wałek Automatic take-off control system 2023
4 M. Korkosz; S. Noga; T. Rogalski Analysis of the mechanical limitations of the selected high-speed electric motor 2023
5 S. Noga; D. Nowak; T. Rogalski; P. Rzucidło The use of vision system to determine lateral deviation from landing trajectory 2023
6 T. Rogalski Transport lotniczy w obliczu wyzwań XXI wieku 2023
7 D. Kordos; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego kołującego po płycie lotniskowej oraz sposób sterowania kołowaniem statku powietrznego z wykorzystaniem tego systemu 2022
8 G. Kopecki; D. Kordos; D. Nowak; T. Rogalski The PAPI Lights-Based Vision System for Aircraft Automatic Control during Approach and Landing 2022
9 K. Doerffer; P. Doerffer; P. Dymora; P. Flaszynski; S. Grigg; M. Jurek; D. Kordos; B. Kowal; M. Mazurek; T. Rogalski; R. Śliwa; R. Unnthorsson The Latest Advances in Wireless Communication in Aviation, Wind Turbines and Bridges 2022
10 T. Rogalski; P. Rzucidło; P. Szwed Estimation of Atmospheric Gusts Using Integrated On-Board Systems of a Jet Transport Airplane - Flight Simulations 2022
11 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski Design advancements for an integrated mission management system for small air transport vehicles in the COAST project 2022
12 B. Brukarczyk; P. Kot; D. Nowak; T. Rogalski; P. Rzucidło Fixed Wing Aircraft Automatic Landing with the Use of a Dedicated Ground Sign System 2021
13 G. Dec; A. Majka; T. Rogalski; D. Rzońca; S. Samolej Regular graph-based free route flight planning approach 2021
14 G. Jaromi; T. Kapuściński; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba In-Flight Tests of Intruder Detection Vision System 2021
15 J. Beran; V. Di Vito; P. Grzybowski; T. Kabrt; P. Masłowski; M. Montesarchio; T. Rogalski Flight management enabling technologies for single pilot operations in Small Air Transport vehicles in the COAST project 2021
16 K. Maciejowska; S. Noga; T. Rogalski Vibration analysis of an aviation engine turbine shaft shield 2021
17 P. Bąk; T. Rogalski; P. Rzucidło; J. Szura; K. Warzocha Transformative Use of Additive Technology in Design and Manufacture of Hydraulic Actuator for Fly-by-Wire System 2021
18 S. Noga; J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in an Immelmann manoeuvre 2021
19 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski A concept for an Integrated Mission Management System for Small Air Transport vehicles in the COAST project 2021
20 G. Drupka; A. Majka; T. Rogalski Automated flight planning method to facilitate the route planning process in predicted conditions 2020
21 G. Jaromi; D. Kordos; A. Paw; T. Rogalski; P. Rzucidło; P. Szczerba Simulation studies of a vision intruder detection system 2020
22 J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in a spin maneuver 2020
23 T. Kapuściński; T. Rogalski; P. Rzucidło; P. Szczerba; Z. Szczerba A Vision-Based Method for Determining Aircraft State during Spin Recovery 2020
24 D. Nowak; T. Rogalski; D. Rzońca; S. Samolej; Ł. Wałek Control System for Aircraft Take-off and Landing Based on Modified PID controllers 2019
25 G. Drupka; T. Rogalski Free Route Airspace-nowe regulacje przestrzeni powietrznej 2019
26 G. Jaromi; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba Wybrane elementy badań wizyjnego układu antykolizyjnego dla lekkich oraz bezzałogowych statków powietrznych 2019
27 J. Prusik; T. Rogalski Sterowanie trajektorią podczas lotu akrobacyjnego 2019
28 S. Pluta; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego znajdującego się na płycie lotniskowej 2019