logo
Karta przedmiotu
logo

Instalacje pokładowe 3

Podstawowe informacje o zajęciach

Cykl kształcenia: 2021/2022

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Lotnictwo i kosmonautyka

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: pierwszego stopnia

Forma studiów: stacjonarne

Specjalności na kierunku: Awionika, Pilotaż, Samoloty, Silniki lotnicze, Zarządzanie ruchem lotniczym

Tytuł otrzymywany po ukończeniu studiów: inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Awioniki i Sterowania

Kod zajęć: 2817

Status zajęć: obowiązkowy dla specjalności Pilotaż

Układ zajęć w planie studiów: sem: 5 / W30 L15 / 4 ECTS / E

Język wykładowy: polski

Imię i nazwisko koordynatora: dr inż. prof. PRz Bogusław Dołęga

Terminy konsultacji koordynatora: Wtorek godz.10-12 L-309 Czwartek godz 8:45-10 L-309

semestr 5: mgr inż. Łukasz Wałek

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Nabycie wiedzy na temat budowy i właściwości pokładowych instalacji samolotów cywilnych.

Ogólne informacje o zajęciach: W ramach przedmiotu prezentowane są zasadnicze cechy konstrukcyjne i eksploatacyjne instalacji pokładowych: elektrycznej, hydraulicznej, paliwowej, przeciwpożarowej, przeciwoblodzeniowej, hermetyzacji i klimatyzacji kabiny, tlenowej i innych. Sposób prezentacji i zakres zajęć dostosowane są do specyfiki specjalizacji pilotażowej, a także uwzględnione są wymagania przepisów EASA AMC FCL.

Materiały dydaktyczne: Materiały pomocnicze w postaci kopii schematów i wykresów

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Anon. JAA/ATPL Theoretical Knowledge Manual Oxford Aviation Training - Jeppesen. 2005
2 Z. Polak, A. Rypulak Awionika, przyrządy i systemy pokładowe WSOSP Dęblin. 2002
3 I. Moir, A.G. Seabridge Civil Avionics Systems John Willey & Sons, Ltd. 2006
4 Stola M., Stefanowicz A. Wyposażenie samolotu Wydawnictwa Politechniki Warszawskiej. 1978
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 M. Stola, A. Stefanowicz Zbiór zadań z instalacji hydraulicznych Wydawnictwa Politechniki Warszawskiej. 1978
Literatura do samodzielnego studiowania
1 J. Domicz, L. Szutowski Podręcznik pilota samolotowego Technika, Poznań. 2006

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Rejestracja na studia specjalizacji pilotażowej na semestr piąty.

Wymagania wstępne w kategorii Wiedzy: Znajomość podstaw mechaniki, elektrotechniki, mechaniki płynów oraz budowy podstawowych przyrządów pomiarowych.

Wymagania wstępne w kategorii Umiejętności: Umiejętność czytania schematów elektrycznych, posługiwania sie podstawowymi przyrządami pomiarowymi.

Wymagania wstępne w kategorii Kompetencji społecznych: Umiejętność współpracy w grupie (zajęcia laboratoryjne)

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK
01 Student rozumie zasadę działania instalacji pokładowych oraz zasady jej wykorzystania podczas lotu wykład, laboratorium egzamin cz. pisemna, zaliczenie cz. praktyczna K_W10++
P6S_WG
02 Student potrafi praktycznie wykonać proste prace obsługowe posługując się laboratoryjnymi modelami instalacji pokładowych. laboratorium zaliczenie cz. praktyczna K_U12++
P6S_UW
03 Posiada wiedzę zgodna z PART FCL w zakresie licencji ATPL wykład, laboratorium egzamin cz. pisemna, zaliczenie cz. pisemna, zaliczenie cz. praktyczna K_W10+
K_U12+
P6S_UW
P6S_WG
04 Konieczność uzupełniania wiedzy nabytej podczas zajęć wykład egzamin cz. pisemna K_K01+
P6S_KR

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
5 TK01 Treści wykładu odniesione są do wymagań przepisów lotniczych określających zakres szkolenia teoretycznego do licencji pilota zawodowego i liniowego ATPL (numeracja tematów wg EASA FCL). HYDRAULIKA 021 01 07 01 Podstawowe zasady hydromechaniki płyny hydrauliczne schemat konstrukcji i funkcjonowanie instalacji hydraulicznych 021 01 07 02 Instalacje hydrauliczne instalacja główna, rezerwowa i awaryjna użytkowanie, wskaźniki, instalacje ostrzegania instalacje pomocnicze 021 01 08 00 Instalacje napędzane powietrzem (tylko silniki tłokowe) 021 01 08 01 Instalacje pneumatyczne źródła zasilania schemat konstrukcji i funkcjonowanie instalacji pneumatycznych 021 01 08 02 Instalacja klimatyzacji ogrzewanie i chłodzenie budowa, działanie i sterowanie 021 01 08 03 Instalacja hermetyzacji wysokość kabinowa, maksymalna wysokość kabinowa, ciśnienie różnicowe strefy hermetyczne w samolocie użytkowanie i wskaźniki urządzenia zabezpieczające i instalacje ostrzegania gwałtowna dekompresja, ostrzeżenie o wysokości kabinowej procedury awaryjne 021 01 08 04 Instalacje odladzania pneumatyczne odladzanie krawędzi natarcia skrzydeł i powierzchni sterujących schemat konstrukcji ograniczenia eksploatacyjne zapoczątkowanie zadziałania (zależności czasowe) instalacji odladzającej 021 01 09 00 Instalacje napędzane powietrzem (samoloty turbośmigłowe i odrzutowe) 021 01 09 01 Instalacja pneumatyczna źródła zasilania schemat budowy możliwe niesprawności, urządzenia ostrzegające użytkowanie, wskaźniki, instalacje ostrzegające instalacje sterowane powietrzem 021 01 09 02 Instalacja klimatyzacji budowa, funkcjonowanie, użytkowanie, wskaźniki i urządzenia ostrzegające ogrzewanie i chłodzenie regulacja temperatury automatyczne i ręczne sterowanie przewietrzanie powietrzem naporowym schemat budowy 021 01 09 03 Instalacje przeciwoblodzeniowe powierzchnie płata i sterów, zespół napędowy, wloty powietrza, szyba przednia schemat budowy, ograniczenia eksploatacyjne i zapoczątkowanie działania, synchronizowanie działania instalacji odladzającej instalacja sygnalizacji oblodzenia 021 01 10 00 Nie pneumatyczne systemy odladzania i przeciwoblodzeniowe 021 01 10 01 Schemat budowy, funkcjonowanie i użytkowanie: wlotów powietrza śmigła rurki Pitota, nadajnika ciśnienia statycznego i urządzeń ostrzegania przed przeciągnięciem szyby przedniej instalacji oczyszczania skrzydła instalacji usuwania wody deszczowej 021 01 11 00 Instalacja paliwowa 021 01 11 01 Zbiorniki paliwa elementy strukturalne i rodzaje rozmieszczenie zbiorników paliwa w samolotach jedno- i wielosilnikowych kolejność i sposoby uzupełniania paliwa paliwo nieużyteczne 021 01 11 02 Zasilanie paliwem zasilanie grawitacyjne i ciśnieniowe zasilanie krzyżowe (poprzeczne) schemat budowy 021 01 11 03 Instalacja zrzucania paliwa 021 01 11 04 Monitorowanie pracy instalacji paliwowej użytkowanie, wskaźniki, instalacje ostrzegające gospodarka paliwem (kolejność przełączania zbiorników paliwa) pręt do pomiaru ilości paliwa 021 02 00 00 ELEKTRYCZNOŚĆ 021 02 01 00 Prąd stały (DC) 021 02 01 01 Zasady ogólne obwody elektryczne napięcie, prąd, opór prawo Ohma obwody oporowe oporność jako funkcja temperatury moc elektryczna, praca elektryczna bezpieczniki (funkcje, rodzaje i działanie) pole elektryczne kondensator (funkcja) 021 02 01 02 Akumulatory rodzaje, właściwości pojemność użytkowanie niebezpieczeństwa 021 02 01 03 Magnetyzm magnetyzm stały elektromagnetyzm przekaźnik, wyłącznik, cewka (zasady działania, funkcja i zastosowanie) energia elektromagnetyczna indukcja elektromagnetyczna 021 02 01 04 Prądnice alternator - zasada działania, funkcja i zastosowanie - urządzenia kontrolujące - regulacja, monitorowanie i zabezpieczanie - sposoby wzbudzania prądnica-rozrusznik 021 02 01 05 Rozprowadzanie energii elektrycznej rozprowadzenie prądu elektrycznego (szyny) monitorowanie pracy elektrycznych przyrządów/ instalacji pokładowych - amperomierz, woltomierz - sygnalizatory odbiorniki energii elektrycznej rozprowadzenie energii elektrycznej prądu stałego - budowa, działanie i monitorowanie instalacji - podstawowe obwody przełączające 021 02 01 06 Przetwornica (zastosowania) 021 02 01 07 Statek powietrzny jako przewodnik elektryczny 021 02 02 00 Prąd przemienny (AC) 021 02 02 01 Zasady ogólne prąd przemienny jedno- i wielofazowy częstotliwość przesunięcie fazy elementy obwodów prądu przemiennego 021 02 02 02 Prądnice prądu zmiennego (alternatory) prądnica trójfazowa prądnica bezszczotkowa (budowa i działanie) napęd prądnicy - napęd utrzymujący stałe obroty - napęd zintegrowany 021 02 02 03 Rozprowadzenie energii prądu przemiennego budowa, działanie i monitorowanie obwody zabezpieczające, łączenie równoległe prądnic prądu przemiennego 021 02 02 04 Transformatory funkcja rodzaje i zastosowanie 021 02 02 05 Silniki synchroniczne i asynchroniczne działanie zastosowanie 021 02 02 06 Zespoły transformująco-prostownicze 021 02 03 00 Półprzewodniki zasady działania półprzewodników rezystory półprzewodnikowe (właściwości i zastosowanie) prostownik (działanie i zastosowanie) tranzystor (działanie i zastosowanie) dioda (działanie i zastosowanie) 021 02 04 00 Podstawy wiedzy o komputerach 021 02 04 01 Obwody logiczne 021 02 04 02 Symbole logiczne 021 02 04 03 Obwody przełączające i symbole logiczne 021 02 05 00 Podstawy teorii propagacji fal radiowych 021 02 05 01 Zasady podstawowe fale elektromagnetyczne długość fali, amplituda, kąt fazowy, częstotliwość pasma częstotliwości, wstęgi boczne, pojedyncza wstęga boczna charakterystyki przebiegów impulsowych fala nośna, modulacja i demodulacja rodzaje modulacji (amplituda, częstotliwość, impulsowa, multipleksowa) obwody oscylacyjne 021 02 05 02 Anteny charakterystyki polaryzacja rodzaje anten 021 02 05 03 Propagacja fal radiowych fala przyziemna fala przestrzenna propagacja w poszczególnych zakresach częstotliwości prognoza propagacji (MUF) zanikanie czynniki wpływające na propagację (odbicie, pochłanianie, interferencja, strefa zmierzchu, strefa brzegowa, góry, ładunki elektrostatyczne) W01 - W15 MEK01 MEK04
5 TK02 Instalacja elektryczna samolotu - budowa, sterowanie i wizualizacja stanu instalacji , Analiza parametrów lotniczej prądnicy prądu stałego, Przetwarzanie energii elektrycznej, Skalowanie paliwomierza lotniczego, System przeciwpożarowy - budowa, sterowanie i wizualizacja stanu instalacji, Obsługa i parametry charakterystyczne akumulatorów lotniczych. L01 - L07 MEK02
5 TK03 021.03.01.00 Hydromechanics: basic principles 021.03.01.01 Concepts and basic principles 021.03.01.01.01 Explain the concept and basic principles of hydromechanics including: hydrostatic pressure; Pascal’s law; the relationship between pressure, force and area; transmission of power: multiplication of force, decrease of displacement. 021.03.02.00 Hydraulic systems 021.03.02.01 Hydraulic fluids: types, characteristics, limitations 021.03.02.01.01 List and explain the desirable properties of a hydraulic fluid with regard to: thermal stability; corrosiveness; flashpoint and flammability; volatility; viscosity. 021.03.02.01.02 State that hydraulic fluids are irritating to skin and eyes. 021.03.02.01.03 List the two different types of hydraulic fluids: synthetic; mineral. 021.03.02.01.04 State that different types of hydraulic fluids cannot be mixed. 021.03.02.01.05 State that at the pressures being considered, hydraulic fluid is considered incompressible. 021.03.02.02 System components: design, operation, degraded modes of operation, indications and warnings 021.03.02.02.01 Explain the working principle of a hydraulic system. 021.03.02.02.02 Describe the difference in the principle of operation between a constant pressure system and a system pressurised only on specific demand. 021.03.02.02.03 State the differences in the principle of operation between a passive hydraulic system (without a pressure pump) and an active hydraulic system (with a pressure pump). 021.03.02.02.04 List the main advantages and disadvantages of system actuation by hydraulic or purely mechanical means with respect to: weight; size; force. 021.03.02.02.05 List the main uses of hydraulic systems. 021.03.02.02.06 State that hydraulic systems can be classified as either high pressure (typically 3000 psi or higher) or low pressure (typically up to 2000 psi). 021.03.02.02.07 State that a high-pressure hydraulic system is typically operating at 3000 psi but on some aircraft a hydraulic pressure of 4000 to 5000 psi may also be used. 021.03.02.02.08 Explain the working principle of a low-pressure (0–2000 psi) system. 021.03.02.02.09 Explain the advantages and disadvantages of a high-pressure system over a low-pressure system. 021.03.02.02.10 Describe the working principle and functions of pressure pumps including: constant pressure pump (swash plate or cam plate); pressure pump whose output is dependent on pump revolutions per minute (rpm) (gear type). 021.03.02.02.11 Explain the following different sources of hydraulic pressure, their typical application and potential operational limitations: manual; engine gearbox; electrical; air (pneumatic and ram-air turbine); hydraulic (power transfer unit) or reversible motor pumps; accessory. 021.03.02.02.12 Explain the following different sources of hydraulic pressure, their typical application and potential operational limitations: manual; engine; gearbox; electrical. 021.03.02.02.13 Describe the working principle and functions of the following hydraulic system components: reservoir (pressurised and unpressurised); accumulators; case drain lines and fluid cooler return lines; piston actuators (single- and double-acting); hydraulic motors; filters; non-return (check) valves; relief valves; restrictor valves; selector valves (linear and basic rotary selectors, two and four ports); bypass valves; shuttle valves; fire shutoff valves; priority valves; fuse valves; pressure and return pipes. 021.03.02.02.14 Explain the function of the demand pump installed on many transport aeroplanes. 021.03.02.02.15 Explain how redundancy is obtained by giving examples. 021.03.02.02.16 Interpret a typical hydraulic system schematic to the level of detail as found in an aircraft flight crew operating manual (FCOM). 021.03.02.02.17 Explain the implication of a high system demand. 021.03.02.02.18 List and describe the instruments and alerts for monitoring a hydraulic system. 021.03.02.02.19 State the indications and explain the implications of the following malfunctions: system leak or low level; low pressure; high temperature. 021.06.01.00 Pneumatic/bleed-air supply 021.06.01.01 Piston-engine air supply 021.06.01.01.01 Describe the following means of supplying air for the pneumatic systems for piston-engine aircraft: compressor; vacuum pump. 021.06.01.01.02 State that an air supply is required for the following systems: instrumentation; heating; de-icing. 021.06.01.02 Gas turbine engine: bleed-air supply 021.06.01.02.01 State that the possible bleed-air sources for gas turbine engine aircraft are the following: engine; auxiliary power unit (APU); ground supply. 021.06.01.02.02 State that for an aeroplane a bleed-air supply can be used for the following systems or components: ice protection; engine air starter; pressurisation of a hydraulic reservoir; air-driven hydraulic pumps; pressurisation and air conditioning. 021.06.01.02.03 State that for a helicopter a bleed-air supply can be used for the following systems or components: anti-icing; engine air starter; pressurisation of a hydraulic reservoir. 021.06.01.02.04 State that the bleed-air supply system can comprise the following: pneumatic ducts; isolation valve; pressure-regulating valve; engine bleed valve (HP/IP valves); fan-air pre-cooler; temperature and pressure sensors. 021.06.01.02.05 Interpret a basic pneumatic system schematic to the level of detail as found in an FCOM. 021.06.01.02.06 Describe the cockpit indications for bleed-air systems. 021.06.01.02.07 Explain how the bleed-air supply system is controlled and monitored. 021.06.01.02.08 State the following bleed-air malfunctions: over-temperature; over-pressure; low pressure; overheat/duct leak; and describe the potential consequences. 021.06.03.00 Aeroplane: pressurisation and air-conditioning system 021.06.03.01 System components, design, operation, degraded modes of operation, indications and warnings 021.06.03.01.01 Explain that a pressurisation and an air-conditioning system of an aeroplane controls: ventilation; temperature; pressure. 021.06.03.01.02 Explain how humidity is controlled. 021.06.03.01.03 Explain that the following components constitute a pressurisation system: pneumatic system as the power source; outflow valve; outflow valve actuator; pressure controller; excessive differential pressure-relief valve; negative differential pressure-relief valve. 021.06.03.01.04 Explain that the following components constitute an airconditioning system and describe their operating principles and function: air-cycle machine (pack, bootstrap system); pack-cooling fan; water separator; mixing valves; flow-control valves (outflow valve); isolation valves; ram-air valve; recirculation fans; filters for recirculated air; temperature sensors. Remark: The bootstrap system is the only air-conditioning system considered for Part-FCL aeroplane examinations. 021.06.03.01.05 Describe the use of hot trim air. 021.06.03.01.06 Define the following terms: cabin altitude; cabin vertical speed; differential pressure; ground pressurisation. 021.06.03.01.07 Describe the operating principle of a pressurisation system. 021.06.03.01.08 Describe the emergency operation by manual setting of the outflow valve position. 021.06.03.01.09 Describe the working principle of an electronic cabin-pressure controller. 021.06.03.01.10 State how the maximum operating altitude is determined. 021.06.03.01.11 Explain: why the maximum allowed value of cabin altitude is limited; a typical value of maximum differential pressure for large transport aeroplanes; the relation between cabin altitude, the maximum differential pressure and maximum aeroplane operating altitude. 021.06.03.01.12 Explain the typical warning on a transport category aircraft when cabin altitude exceeds 10 000 ft. 021.06.03.01.13 List and interpret typical indications of the pressurisation system. 021.06.03.01.14 Describe the main operational differences between a bleed-air-driven air-conditioning system and an electrically driven air-conditioning system as found on aircraft without engine bleed-air system. 021.07.01.00 Types, operation, indications 021.07.01.01 Types, design, operation, indications and warnings, operational limitations 021.07.01.01.01 Explain the concepts of antiicing and deicing. 021.07.01.01.02 Name the components of an aircraft which can be protected from ice accretion. 021.07.01.01.03 State that on some aeroplanes the tail does not have an ice-protection system. 021.07.01.01.04 State the different types of anti-icing/de-icing systems and describe their operating principle: hot air; electrical; fluid. 021.07.01.01.05 Describe the operating principle of the inflatable boot de-icing system. 021.07.02.00 Ice warning systems 021.07.02.01 Types, operation, and indications 021.07.02.01.01 Describe the different operating principles of the following ice detectors: mechanical systems using air pressure; electromechanical systems using resonance frequencies. 021.07.02.01.02 Describe the principle of operation of ice warning systems. 021.08.01.00 Piston engine 021.08.01.02 Design, operation, system components, indications 021.08.01.02.01 State the tasks of the fuel system. 021.08.01.02.02 Name the following main components of a fuel system, and state their location and their function: lines; boost pump; pressure valves; filter, strainer; tanks (wing, tip, fuselage); vent system; sump; drain; fuel-quantity sensor; fuel-temperature sensor. 021.08.01.02.03 Describe a gravity fuel feed system and a pressure feed fuel system. 021.08.01.02.04 Describe the construction of the different types of fuel tanks and state their advantages and disadvantages: drum tank; bladder tank; integral tank. 021.08.01.02.05 Explain the function of cross-feed. 021.08.01.02.06 Define the term ‘unusable fuel’. 021.08.01.02.07 List the following parameters that are monitored for the fuel system: fuel quantity (low-level warning); fuel temperature. 021.08.02.00 Turbine engine 021.08.02.02 Design, operation, system components, indications 021.08.02.02.01 Explain the function of the fuel system: lines; centrifugal boost pump; pressure valves; fuel shut-off valve; filter, strainer; tanks (wing, tip, fuselage, tail); bafflers/baffles; sump; vent system; drain; fuel-quantity sensor; fuel-temperature sensor; refuelling/defueling system; fuel dump/jettison system. 021.08.02.02.02 Name the main components of the fuel system and state their location and their function: trim fuel tanks; bafflers; refuelling/defueling system; fuel dump/jettison system. Remark: For completion of list, please see 021 08 01 02 (02). 021.08.02.02.03 Interpret a typical fuel system schematic to the level of detail as found in an aircraft FCOM. 021.08.02.02.04 Explain the limitations in the event of loss of booster pump fuel pressure. 021.08.02.02.05 Describe the use and purpose of drip sticks (manual magnetic indicators) (may also be known as dip stick or drop stick). 021.08.02.02.06 Explain the considerations for fitting a fuel dump/jettison system and, if fitted, its function. 021.09.01.00 General, definitions, basic applications: circuit breakers, logic circuits 021.09.01.01 Static electricity 021.09.01.01.01 Explain static electricity and describe the flying conditions where aircraft are most susceptible to build-up of static electricity. 021.09.01.01.02 Describe a static discharger and explain the following: its purpose; typical locations; pilot’s role of observing it during pre-flight inspection. 021.09.01.01.03 Explain why an aircraft must first be grounded before refuelling/defueling. 021.09.01.01.04 Explain the reason for electrical bonding. 021.09.01.02 Direct current (DC) 021.09.01.02.01 Explain the term ‘direct current’ (DC), and state that current can only flow in a closed circuit. 021.09.01.02.02 Explain the basic principles of conductivity and give examples of conductors, semiconductors and insulators. 021.09.01.02.03 Describe the difference in use of the following mechanical switches and explain the difference in observing their state (e.g. ON/OFF), and why some switches are guarded: toggle switch; rocker switch; pushbutton switch; rotary switch. Explain the difference in observing their state (e.g. ON/OFF) and why some switches are guarded. 021.09.01.02.04 Define voltage and current, and state their unit of measurement. 021.09.01.02.05 Explain Ohm’s law in qualitative terms. 021.09.01.02.06 Explain the effect on total resistance when resistors are connected in series or in parallel. 021.09.01.02.07 State that resistances can have a positive or a negative temperature coefficient (PTC/NTC) and state their use. 021.09.01.02.08 Define electrical power and state the unit of measurement. 021.09.01.03 Alternating current (AC) 021.09.01.03.01 Explain the term ‘alternating current’ (AC), and compare its use to DC with regard to complexity. 021.09.01.03.02 Define the term ‘phase’, and explain the basic principle of single-phase and three-phase AC. 021.09.01.03.03 State that aircraft can use single-phase or three-phase AC. 021.09.01.03.04 Define frequency and state the unit of measurement. 021.09.01.03.05 Define ‘phase shift’ in qualitative terms. 021.09.01.06 Electromagnetism 021.09.01.06.01 State that an electrical current produces a magnetic field. 021.09.01.06.02 Describe how the strength of the magnetic field changes with the magnitude of the current. 021.09.01.06.03 Explain the purpose and the working principle of a solenoid. 021.09.01.06.04 Explain the purpose and the working principle of a relay. 021.09.01.06.05 Explain the principle of electromagnetic induction and how two electrical components or systems may affect each other through this principle. 021.09.01.07 Circuit protection 021.09.01.07.01 Explain the working principle of a fuse and a circuit breaker. 021.09.01.07.02 Explain how a fuse is rated. 021.09.01.07.03 Describe the principal difference between the following types of circuit breakers: thermal circuit breaker sensing magnitude of current; magnetic circuit breaker sensing direction of current. 021.09.01.07.04 Describe how circuit breakers may be used to reset aircraft systems/computers in the event of system failure (when part of a described procedure). 021.09.01.07.05 Explain a short circuit in practical terms using Ohm’s Law, power and energy expressions highlighting the risk of fire due to power transfer and extreme energy dissipation. 021.09.01.07.06 Explain the risk of fire resulting from excessive heat in a circuit subjected to overcurrent. 021.09.01.07.07 Explain that overcurrent situations may be transient. 021.09.01.07.08 Explain the hazards of multiple resets of a circuit breaker or the use of incorrect fuse rating when replacing blown fuses. 021.09.01.08 Semiconductors and logic circuits 021.09.01.08.01 Describe the effect of temperature on semiconductors with regard to function and longevity of the component. 021.09.01.08.02 Describe the following five basic logic functions, as used in aircraft FCOM documentation, and recognise their schematic symbols according to the ANSI/MIL standard: AND; OR; NOT; NOR; NAND. 021.09.01.08.03 Interpret a typical logic circuit schematic to the level of detail as found in an aircraft FCOM. 021.09.02.00 Batteries 021.09.02.01 Types, characteristics and limitations 021.09.02.01.01 State the function of an aircraft battery. 021.09.02.01.02 Name the types of rechargeable batteries used in aircraft: lead-acid; nickel-cadmium; lithium-ion; lithium-polymer. 021.09.02.01.03 Compare the different battery types with respect to: load behaviour; charging characteristics; risk of thermal runaway. 021.09.02.01.04 Explain the term ‘cell voltage’ and describe how a battery may consist of several cells that combined provide the desirable voltage and capacity. 021.09.02.01.05 Explain the difference between battery voltage and charging voltage. 021.09.02.01.06 Define the term ‘capacity of batteries’ and state the unit of measurement used. 021.09.02.01.07 State the effect of temperature on battery capacity and performance. 021.09.02.01.08 State that in the case of loss of all generated power (battery power only) the remaining electrical power is time-limited. 021.09.02.01.09 Explain how lithium-type batteries pose a threat to aircraft safety and what affects this risk: numbers of batteries on board an aircraft including those brought on board by passengers; temperature, of both battery and environment; physical condition of the battery; battery charging. 021.09.02.01.10 Describe how to contain a battery thermal runaway highlighting the following: how one cell can affect the neighbouring cells; challenges if it happens in an aircraft during flight. 021.09.03.00 Generation 021.09.03.01 DC generation 021.09.03.01.01 Describe the basic working principle of a simple DC generator or DC alternator. 021.09.03.01.03 Explain the purpose of reverse current protection from the battery/busbar to the alternator. 021.09.03.01.04 Describe the basic operating principle of a starter generator and state its purpose. 021.09.03.02 AC generation 021.09.03.02.01 Describe the working principle of a brushless three-phase AC generator. 021.09.03.02.02 State that the generator field current is used to control voltage. 021.09.03.02.03 State the relationship between output frequency and the rpm of a three-phase AC generator. 021.09.03.02.04 Explain the term ‘frequency wild generator’. 021.09.03.02.05 List the following different power sources that can be used for an aeroplane to drive an AC generator: engine; APU; RAT; hydraulic. 021.09.03.02.06 List the following different power sources that can be used for a helicopter to drive an AC generator: engine; APU; gearbox. 021.09.03.03 Constant speed drive (CSD) and integrated drive generator (IDG) systems 021.09.03.03.01 Describe the function of a CSD. 021.09.03.03.02 Explain the parameters of a CSD that are monitored. 021.09.03.03.03 Describe the function of an IDG. 021.09.03.03.04 Explain the consequences of a mechanical disconnection during flight for a CSD and an IDG. 021.09.03.03.05 Explain that a CSD/IDG has its own, independent oil system and how a leak from this may appear as an engine oil leak. 021.09.03.04 Transformers, transformer rectifier units (TRUs), static inverters 021.09.03.04.01 State the function of a transformer. 021.09.03.04.02 State the function of a TRU and its purpose, including type of output. 021.09.03.04.03 State the function of a static inverter and its purpose, including type of output. 021.09.04.00 Distribution 021.09.04.01 General 021.09.04.01.01 Explain the function of a busbar. 021.09.04.01.02 Describe the function of the following buses: AC bus; DC bus; emergency AC or DC bus; essential AC or DC bus; battery bus; hot bus, ground servicing or maintenance bus. 021.09.04.01.03 State that the aircraft structure can be used as a part of the electrical circuit (common earth) and explain the implications for electrical bonding. 021.09.04.01.04 Explain the function of external power. 021.09.04.01.05 State that a priority sequence exists between the different sources of electrical power on ground and in flight. 021.09.04.01.06 Explain the term ‘load sharing’. 021.09.04.01.07 Explain the term ‘load shedding’. 021.09.04.01.08 Describe typical systems that can be shed in the event of a supply failure, such as passenger entertainment system and galley power. 021.09.04.01.09 Interpret a typical electrical system schematic to the level of detail as found in an aircraft FCOM. 021.09.04.01.10 Explain the difference between a supply (e.g. generator) failure and a bus failure, and the operating consequences of either. 021.09.04.02 DC distribution 021.09.04.02.01 Describe a simple DC electrical system of a single-engine aircraft. 021.09.04.02.02 Describe a DC electrical system of a multi-engine aircraft (CS-23/CS-27) including the distribution consequences of loss of generator(s) or bus failure. 021.09.04.02.03 Describe the DC part of an electrical system of a transport aircraft (CS-25/CS-29) including the distribution consequences of loss of DC supply or bus failure. 021.09.04.02.04 Give examples of DC consumers. 021.09.04.03 AC distribution 021.09.04.03.01 Explain the difference in the principle of operation for a split AC electrical system and a parallel AC electrical system. 021.09.04.03.02 Describe the following distribution consequences: power transfer between different power supplies; power transfer in the event of a supply failure; loss of all normal AC supplies. 021.09.04.03.03 Give examples of AC consumers. 021.09.04.03.04 Explain the conditions to be met for paralleling AC generators. 021.09.04.03.05 State that volt-ampere (VA) is the unit for total power consumed in an AC system. 021.09.04.04 Electrical load management and monitoring systems: automatic generators and bus switching during normal and failure operation, indications and warnings 021.09.04.04.01 Give examples of system control, monitoring and annunciators using the following terms: generator control unit (GCU) for monitoring generator output and providing network protection; exciter contactor/breaker/relay for control of generator exciter field; generator contactor/breaker/relay for connecting the generator to the network; bus-tie contactor/breaker/relay for connecting busbars together; generator switch on the flight deck for manual control of exciter contactor; IDG/CSD disconnect switch on the flight deck for mechanical disconnection of the generator; bus-tie switch on the flight deck with AUTO and OFF positions only. 021.09.04.04.02 Describe, for normal and degraded modes of operation, the following functions of an electrical load management system on ground and in flight using the terms in 021 09 04 04 (01): distribution; monitoring; protection in the event of incorrect voltage; protection in the event of incorrect frequency; protection in the event of a differential fault. 021.09.04.04.03 Describe the requirement for monitoring the aircraft batteries. 021.09.04.04.04 Explain the importance of monitoring the temperature of nickel-cadmium and lithium-type batteries. 021.09.04.04.05 Interpret various different ammeter indications of an ammeter which monitors the charge current of the battery. 021.09.05.00 Electrical motors 021.09.05.01 General 021.09.05.01.01 State that the purpose of an electrical motor is to convert electrical energy into mechanical energy. 021.09.05.01.02 State that because of the similarity in design, a generator and an electrical motor may be combined into a starter generator. 021.09.05.01.03 Explain that the size of the engine determines how much energy is required for starting, and state the following: small turbine engines may be able to use the battery for a very limited number of start attempts; large turbine engines require one or more power sources, either external or on-board. 021.09.05.02 Operating principle 021.09.05.02.01 Describe how the torque of an electrical motor is determined by the supplied voltage and current, and the resulting magnetic fields within the engine. 021.09.05.02.02 State that electrical motors can be either AC or DC. 021.09.05.02.03 Explain the consequences of the following: rotor seizure; rotor runaway. 021.09.05.03 Components 021.09.05.03.01 Name the following components of an electrical motor: rotor (rotating part of an electrical motor); stator (stationary part of an electrical motor). 021.10.03.00 Engine fuel pumps 021.10.03.01 Engine-driven fuel pump 021.10.03.01.01 Explain the need for a separate engine-driven fuel pump. 021.12.01.00 Smoke detection 021.12.01.01 Types, design, operation, indications and warnings 021.12.01.01.01 Explain the operating principle of the following types of smoke detection sensors: optical; ionising. 021.12.01.01.02 Give an example of warnings, indications and function tests. 021.12.02.00 Fire-protection systems 021.12.02.01 Fire extinguishing (engine and cargo compartments) 021.12.02.01.01 Explain the operating principle of a built-in fire-extinguishing system and describe its components. 021.12.02.01.02 State that two discharges must be provided for each engine (see CS 25.1195(c) Fire-extinguisher systems). 021.12.02.02 Fire detection 021.12.02.02.01 Explain the following principles of fire detection: resistance and capacitance; gas pressure. 021.12.02.02.02 Explain fire-detection applications such as: bimetallic; continuous loop; gaseous loop (gas-filled detectors). 021.12.02.02.03 Explain why generally double-loop systems are used. 021.12.02.02.04 Give an example of warnings, indications and function tests of a fire-protection system. 021.12.03.00 Rain-protection system 021.12.03.01 Principle and method of operation 021.12.03.01.01 Explain the principle and method of operation of the following windshield rain-protection systems for an aeroplane: wipers; liquids (rain-repellent); coating. 021.12.03.01.02 Explain the principle and method of operation of wipers for a helicopter. 021.13.01.00 Cockpit, portable and chemical oxygen systems 021.13.01.01 Operating principles, actuation methods, comparison 021.13.01.01.01 Describe the basic operating principle of a cockpit oxygen system and describe the following different modes of operation: normal (diluter demand); 100 %; emergency. 021.13.01.01.02 Describe the operating principle and the purposes of the following two portable oxygen systems: smoke hood; portable bottle. 021.13.01.01.03 Describe the following two oxygen systems that can be used to supply oxygen to passengers: fixed system (chemical oxygen generator or gaseous system); portable. 021.13.01.01.04 Describe the actuation methods (automatic and manual) and the functioning of a passenger oxygen mask. 021.13.01.01.05 Compare chemical oxygen generators to gaseous systems with respect to: capacity; flow regulation. 021.13.01.01.06 State the dangers of grease or oil related to the use of oxygen systems. W01-W15, L01-L07 MEK03

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 5) Godziny kontaktowe: 30.00 godz./sem.
Uzupełnienie/studiowanie notatek: 10.00 godz./sem.
Studiowanie zalecanej literatury: 10.00 godz./sem.
Laboratorium (sem. 5) Przygotowanie do laboratorium: 15.00 godz./sem.
Godziny kontaktowe: 15.00 godz./sem.
Dokończenia/wykonanie sprawozdania: 15.00 godz./sem.
Konsultacje (sem. 5) Przygotowanie do konsultacji: 2.00 godz./sem.
Udział w konsultacjach: 2.00 godz./sem.
Egzamin (sem. 5) Przygotowanie do egzaminu: 15.00 godz./sem.
Egzamin pisemny: 3.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Egzamin końcowy w formie pisemnej składający się z części opisowej i problemowej (Mek01, Mek03, Mek04). Warunkiem dopuszczenia do egzaminu jest uzyskanie zaliczenia z laboratorium (weryfikacja części Mek01 i Mek03). Ocena końcowa z egzaminu jest średnią z obu części, jednak do jej wyliczenia niezbędne są pozytywne oceny z obu części.
Laboratorium Oceniane jest przygotowanie do wykonania ćwiczenia, sposób jego wykonania oraz jakość sprawozdania końcowego (Mek02 i Mek03).
Ocena końcowa Ocena końcowa jest sumą ważoną zaliczenia zajęć laboratoryjnych z wagą 0.4 oraz egzaminu końcowego z wagą 0.6; przy czym obie oceny cząstkowe muszą być pozytywne.

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 B. Dołęga; G. Kopecki; D. Kordos; P. Rzucidło Układ spadochronowy 2022
2 B. Dołęga; P. Grzybowski; G. Kopecki; D. Kordos; D. Nowak; P. Rzucidło; A. Tomczyk; Ł. Wałek System redundantnego sterowania i nawigacji, zwłaszcza do samolotów bezzałogowych, ultralekkich załogowych i lekkich sportowych 2021