logo
Item card
logo

Engineering thermodynamics

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical and process engineering

The area of study: technical sciences

The profile of studing:

The level of study: first degree study

Type of study: full time

discipline specialities : Hydrogen technologies, Processing of polymer materials , Product design and engineering of pro-ecological processes

The degree after graduating from university: Bachelor of Science (BSc)

The name of the module department : Department of Chemical Engineering and Process Control

The code of the module: 278

The module status: mandatory for teaching programme Hydrogen technologies, Processing of polymer materials , Product design and engineering of pro-ecological processes

The position in the studies teaching programme: sem: 4 / W30 C30 / 5 ECTS / E

The language of the lecture: Polish

The name of the coordinator: Prof. Dorota Antos, DSc, PhD, Eng.

office hours of the coordinator: Poniedziałek 10-12, czwartek 10-12

semester 4: Roman Bochenek, PhD, Eng. , office hours Tuesday 10-12, Friday 10-12

The aim of studying and bibliography

The main aim of study: The goal of eductaion is trnasfer the knowledge to students on fundamentals of chemical and technical termodynamics

The general information about the module: Students gain knowledge on equations of state, thermodynamic functions, characteristic processes of non-ideal fluids and quilibrium in multiphase systems

Bibliography required to complete the module
Bibliography used during lectures
1 E Kuciel Termodynamika Procesowa, Wydawnictwo Politechniki Wrocławskiej, Wrocław . 1987
2 S. Michałowski, K. Wańkowicz Termodynamika Procesowa WNT, Warszawa . 1993
Bibliography used during classes/laboratories/others
1 S. Wroński, R. Pohorecki, J. Siwiński Przykłady obliczeń z termodynamiki i kinetyki inżynierii chemicznej WNT, Warszawa. 1979
Bibliography to self-study
1 J. Gmehling, B. Kolbe, M. Kleuber, J. Rarey Chemical Thermodynamics Wiley-VCH. 2012

Basic requirements in category knowledge/skills/social competences

Formal requirements: passing the third semester

Basic requirements in category knowledge: Knowledge in the scope of thermodynemics of ideal fluids - basic thermodynamic function

Basic requirements in category skills: Student is able to determine parameters of ideal fluids

Basic requirements in category social competences: Student is able to work in a team

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Students knows equations of state for gases and liquids, selected thermodynamic functions for pure substances and mixtures, knows fundamentals of thermodynamic cycles, fundamentals of equilibrium in multi-phase systems lecture exam, K_W03+
K_W06+
K_U06+
K_U19+
K_K01+
P6S_KK
P6S_UU
P6S_UW
P6S_WG
02 Student is able to calulate parameters of real fuids, he is able to caluate thermodynamics funstion for real fluids seminar test K_W03+
K_U06+
K_K01+
P6S_KK
P6S_UW
P6S_WG
03 Student is able to calulate activity and fugacity of fluids He is able to determe parameters of phase equilibrium seminars test K_W03+
K_W06+
K_K01+
P6S_KK
P6S_WG

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
4 TK01 Equations of state of fluids, thermodynamic functions, characteristic processes for non-ideal liquids, thermodynamics of cooling and heating cycles. Equations of state for real solutions, thermodynamic functions for real solutions. Basics of equilibrium in multiphase systems, fugativity, activity, methods of calculation. Phase equilibrium for systems liquid-liquid, liquid-vapor, liquid-solid. wykład 30h ćwiczenia 30 h MEK01 MEK02 MEK03

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 4) The preparation for a test: 10.00 hours/sem.
contact hours: 30.00 hours/sem.
complementing/reading through notes: 15.00 hours/sem.
Studying the recommended bibliography: 10.00 hours/sem.
Class (sem. 4) The preparation for a Class: 10.00 hours/sem.
The preparation for a test: 10.00 hours/sem.
contact hours: 30.00 hours/sem.
Finishing/Studying tasks: 5.00 hours/sem.
Advice (sem. 4) The participation in Advice: 2.00 hours/sem.
Exam (sem. 4) The preparation for an Exam: 20.00 hours/sem.
The written exam: 2.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture on the basis of merk achieved for the exam
Class on the basis of merk achieved for the colloquium
The final grade 60% mark for the exam 40% mark for the colloquium repetition of exam 90% of the score second repetition 80% of the score

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : yes

Available materials : physico-chemical data

The contents of the module are associated with the research profile: yes

1 D. Antos; M. Korbetskyy; P. Mruc; M. Olbrycht Altering the mobile phase composition to enhance self-disproportionation of enantiomers in achiral chromatography 2024
2 D. Antos; W. Piątkowski Equilibria and kinetics of ion-exchange 2024
3 D. Antos; M. Balawejder; J. Gumieniak; P. Mruc; M. Olbrycht; W. Piątkowski Separation of non-racemic mixtures of enantiomers by achiral chromatography 2023
4 D. Antos; M. Kołodziej; W. Piątkowski; T. Rumanek Preferential precipitation of acidic variants from monoclonal antibody pools 2023
5 D. Antos; M. Kołodziej; W. Piątkowski; T. Rumanek; P. Zimoch Coupling of chromatography and precipitation for adjusting acidic variant content in a monoclonal antibody pool 2023
6 D. Antos; R. Bochenek; B. Filip; W. Marek Flow behavior of protein solutions in a lab-scale chromatographic system 2023
7 D. Antos; R. Dürr; A. Kienle; E. Otto; M. Przywara Modeling of particle formation in pan granulators with sieve-mill recycle 2023
8 D. Antos; R. Muca Protein association on multimodal chromatography media 2023
9 D. Antos; W. Piątkowski Kinetic and Thermodynamic Aspects of Hydrophobic Interaction Chromatography 2023
10 D. Antos; I. Poplewska; P. Zimoch Dissociation events during processing of monoclonal antibodies on strong cation exchange resins 2022
11 D. Antos; A. Bajek-Bil; M. Balawejder; M. Olbrycht; W. Piątkowski Sposób otrzymywania stereoizomeru szczawianu nafronylu o konfiguracji absolutnej (2S, 2\'R) 2021
12 D. Antos; A. Bajek-Bil; M. Balawejder; M. Olbrycht; W. Piątkowski; I. Poplewska Development of a Route to the Most Active Nafronyl Stereoisomer by Coupling Asymmetric Synthesis and Chiral Chromatography Separation 2021
13 D. Antos; K. Baran; R. Bochenek; B. Filip; D. Strzałka Influence of the geometry of extra column volumes on band broadening in a chromatographic system. Predictions by computational fluid dynamics 2021
14 D. Antos; K. Baran; W. Piątkowski; A. Stańczak; P. Zimoch Separation of charge variants of a monoclonal antibody by overloaded ion exchange chromatography 2021
15 D. Antos; P. Antos; M. Balawejder; R. Bochenek; J. Gorzelany; K. Kania; M. Kołodziej; N. Matłok; M. Olbrycht; W. Piątkowski; M. Przywara; G. Witek Sposób wytwarzania nawozu wieloskładnikowego o kontrolowanym uwalnianiu składników 2021
16 D. Antos; R. Dürr; A. Kienle; E. Otto; M. Przywara Population Balance Modelling of Pan Granulation Processes 2021
17 D. Antos; R. Dürr; A. Kienle; E. Otto; M. Przywara Process Behavior and Product Quality in Fertilizer Manufacturing Using Continuous Hopper Transfer Pan Granulation—Experimental Investigations 2021
18 D. Antos; W. Piątkowski; I. Poplewska A case study of the mechanism of unfolding and aggregation of a monoclonal antibody in ion exchange chromatography 2021
19 D. Antos; A. Górak; M. Jaworska Review on the application of chitin and chitosan in chromatography 2020
20 D. Antos; G. Carta; M. Kołodziej; R. Muca; W. Piątkowski Effects of negative and positive cooperative adsorption of proteins on hydrophobic interaction chromatography media 2020
21 D. Antos; J. Beck; A. Durauer; R. Hahn; A. Jungbauer; M. Kołodziej; W. Marek; W. Piątkowski; D. Sauer Scale up of a chromatographic capture step for a clarified bacterial homogenate - Influence of mass transport limitation and competitive adsorption of impurities 2020
22 D. Antos; K. Baran; A. Stańczak A high-throughput method for fast detecting unfolding of monoclonal antibodies on cation exchange resins 2020
23 D. Antos; P. Antos; M. Balawejder; R. Bochenek; M. Kołodziej; N. Matłok; M. Olbrycht; W. Piątkowski; M. Przywara Mechanism of nutrition activity of a microgranule fertilizer fortified with proteins 2020
24 D. Antos; K. Baran; W. Marek; W. Piątkowski Effect of flow behavior in extra-column volumes on the retention pattern of proteins in a small column 2019
25 D. Antos; M. Balawejder; H. Lorenz; M. Olbrycht; W. Piątkowski; I. Poplewska; A. Seidel-Morgenstern Cooperative Kinetic Model to Describe Crystallization in Solid Solution Forming Systems 2019
26 D. Antos; M. Kołodziej; A. Łyskowski; W. Piątkowski; I. Poplewska; P. Szałański Determination of protein crystallization kinetics by a through-flow small-angle X-ray scattering method 2019
27 D. Antos; P. Antos; M. Balawejder; R. Bochenek; J. Gorzelany; K. Kania; M. Kołodziej; N. Matłok; M. Olbrycht; W. Piątkowski; M. Przywara; G. Witek Sposób wytwarzania nawozu wieloskładnikowego o kontrolowanym uwalnianiu składników 2019