logo
Item card
logo

Bioprocess engineering

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Biotechnology

The area of study: technical sciences

The profile of studing:

The level of study: first degree study

Type of study: full time

discipline specialities : Applied biochemistry, Purification and analysis of biotechnological products

The degree after graduating from university: Bachelor of Science (BSc)

The name of the module department : Department of Chemical Engineering and Process Control

The code of the module: 242

The module status: mandatory for teaching programme

The position in the studies teaching programme: sem: 5, 6 / W45 C30 L15 / 6 ECTS / Z,E

The language of the lecture: Polish

The name of the coordinator: Izabela Poplewska, PhD, Eng.

office hours of the coordinator: środa 8.45-10.15, piątek 12.05-13.35

semester 5: Michał Kołodziej, PhD, Eng.

semester 6: Michał Kołodziej, PhD, Eng.

The aim of studying and bibliography

The main aim of study: The student obtains knowledge of the basics of Bioprocess Engineering, including the theory of heat and mass transport. Then he learns to apply both theories to the units taught in the subject of unit processes of Bioprocess Engineering. The student learns the mechanisms of bioengineering processes, methods of their mathematical modeling and optimal conduct.

The general information about the module: The module is implemented on the fifth and sixth semester. In sem. 5 the module includes 30 hours.L, 15 hours. Exc.; 15 hours. L.;In sem. 6 the module includes 15 hours L.,15 hours. Ex. Semester 5 ends with a credit. Semester 6 ends with an exam. The lecture is supported by blackboard exercises, where the practical application of the theory is shown on task examples, and also a laboratory, where practical methods of experimental research on unit processes and the interpretation of experimental data are shown.

Bibliography required to complete the module
Bibliography used during lectures
1 T. Hobler Ruch ciepła i wymienniki WNT W-wa. 1986
2 T. Hobler Dyfuzyjny ruch masy i absorbery WNT W-wa. 1976
3 M. Serwiński Zasady inżynierii chemicznej i procesowej WNT W-wa. 1982
4 Praca zbior. pod red. Z Ziółkowskiego Procesy dyfuzyjne i termodynamiczne, cz. I; II; III skrypt Pol. Wrocławskiej. 1980
5 D. Antos, K.Kaczmarski, W. Piątkowski Wymiana ciepła Mat. Pom. Of. Wyd. PRz. 2012
6 K. Kaczmarski, W. Piątkowski Ruch masy Mat. pom. Of. Wyd. PRz. 2014
7 D. Antos, W. Piątkowski Procesy dyfuzyjne Mat. pom. Of. Wyd. PRz. 2014
8 D. Antos, W. Piątkowski Procesy równoczesnego ruchu ciepła i masy Mat. pom. Of. Wyd. PRz. 2014
Bibliography used during classes/laboratories/others
1 R. Zarzycki Zadania rachunkowe z Inżynierii Chemicznej PWN Łódź. 1980
2 Praca zbiorowa pod red. J. Bandrowskiego i M. Palicy Materiały pomocnicze do ćwiczeń i projektów z Inżynierii chemicznej Wyd. Pol. Śl. 2005
3 Z. Kawala; M.M. Pająk; J. Szust; T. Kudra Zbiór zadań z podstawowych procesów Inżynierii Chemicznej skrypt Pol. Wrocławskiej cz.: II oraz III. 1979
4 K.F. Pawłow; P.G. Romankow; A.A. Noskow Przykłady i zadania z zakresu aparatury i inżynierii chemicznej Wydawnictwa Naukowo-Techniczne. 1981
5 T. Kudra (pod redakcją) Zbiór zadań z podstaw teoretycznych inżynierii chemicznej i procesowej WNT W-wa. 1985
6 praca zbiorowa pod red. PRz Inżynieria Chemiczna Laboratorium Of. Wyd. PRz. 1998
7 J. Bandrowski, L. Troniewski Destylacja i rektyfikacja PWN W-wa. 1980
Bibliography to self-study
1 Z. Ziółkowski Ekstrakcja w przemyśle chemicznym WNT W-wa. 1980
2 S. Bredsznajder Własności gazów i cieczy WNT W-wa. 1962
3 R. Petrus, G. Aksielrud, J. Gumnicki, W. Piątkowski Wymiana masy w układzie ciecz-ciało stałe Of. Wyd. PRz. 1998

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for the sem. V and VI

Basic requirements in category knowledge: Knowlegde on applied mathematics, physical chemistry, chemical thermodynamics

Basic requirements in category skills: 1. Basic konwledge in the area of: phsysics, mathematics, phsysical chemistry, informatics 2. Ability to learn from textbooks, lecture notes, to make out lecture notes 3. Ability to solve problems

Basic requirements in category social competences: Ability to intellectual work in the group

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Student acquires knowledge of theoretical foundations of heat motion and diffusive mass motion. problem lecture, table exercises; problem exercises; problem lab. the exam written part, colloquium K_W10++
K_W18++
K_U12+
K_K01+
P6S_KK
P6S_KR
P6S_UW
P6S_WG
02 Student based on the basic theories of processes, ie. heat transfer, mass transfer taught describe the basic processes of separation of mixtures, including biological mixtures. problem lecture; table exercises; problem lab Exam: written part, colloquium K_W10+
K_W18+
K_U12+
K_K01+
P6S_KK
P6S_KR
P6S_UW
P6S_WG
03 Student can separate the mixture by means of extraction, distillation, rectification, absorption. problem lecture; table exercises; problem lab Exam: written part, colloquium K_W10++
K_W18++
K_U12+
K_K01+
P6S_KK
P6S_KR
P6S_UW
P6S_WG
04 Student knows the mechanisms of engineering processes and the methods of their mathematical modeling and optimal conduct. problem lecture; table exercises; problem lab Exam: written part, colloquium K_W10++
K_W18+++
P6S_WG

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
5 TK01 Heat Transfer: Kinds of the Heat Transfer: Thermal Conduction, I-St Fourier Law, Thermal Conduction Coefficient, Heat Non- And Conductors, Thermal Conduction Across Wall, Heat Transfer Resistance, Heat Convection – Newton Equation, Heat Transfer Cases, Criterial Numbers And Equations, Heat Radiation, Heat Screen Meaning, Heat Losses to Environment, Overall Heat Transfer, Newton Equation for Overall Heat Transfer, Overall Heat Transfer Coefficient, Basis Of Heat Exchanger Design. W1-W14, C1-C7 MEK01 MEK02 MEK04
5 TK02 Mass Transfer: Mass Diffusion, I-St Fick Law, Mass Diffusion Coefficients, Mass Transfer Resistance, Kinds of the Mass Diffusion, Mass Diffusion, Mass Convection, Newton Kinetic Equation, Mass Transfer Cases, Criterial Numbers And Equations, Overall Mass Transfer, Newton Equation for Overall Mass Transfer, Overall Mass Transfer Coefficient, Disappearance of Mass Transfer Resistance, Overall Mass Transfer Driving Force, Basis Of Mass Exchanger Design. Absorption; A) Process Definition, B) Static’s of the Process – Absorption Equilibrium, Kinds of the Equilibrium Line Notations, C) Process Kinetics, Mass and Overall Mass Transport in the Absorption, D) Mass Balance of the Absorption, Operation Line of the Absorption, Minimum of the Spraying Liquid Mass and Velocity, E) Overall Mass Transfer Driving Force in Absorption, F) Chemisorption. W15-W30, C8-C15 MEK01 MEK02 MEK03 MEK04
6 TK01 Distillation And Rectification: Points A) to F) Analogous to the Same Above with the Following Differences: Distillation Equilibrium for Binary Component System, Kinds of the Equilibrium Line Notations - for Ideal System – Raoult Law, Nonideal Systems – Aberrations From Raoult Law, Azeotropes, Differential Distillation, Equilibrium Distillation, Mass and Overall Mass Transport in the Rectification, Batch Rectification, Continuous Rectification, Heat and Mass Balances of the Rectification, Heat and Mass Balances of the Operated Plate, Operation Lines of the Rectification, Minimum and Maximum Minimum of the Column Reflux W1-W7, C1-C7, L1-L8 MEK02 MEK03 MEK04
6 TK02 Extraction: Points A) to F) Analogous to the Same Above with the Following Differences: Extraction Equilibrium for Ternary Component System, Ideal System – Nernst Law, Nonideal Systems – Aberrations From Nernst Law, Stepping Extraction Parallel-Current and Counter-Current Extraction, Minimum and Maximum of the Extrahent Mass, Kinds of the Mathematics Solution of the Mentioned Above Extraction Cases, Column Extraction. W8-W15, C8-C15, L9-L15 MEK02 MEK03 MEK04

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 5) The preparation for a test: 7.00 hours/sem.
contact hours: 30.00 hours/sem.
complementing/reading through notes: 5.00 hours/sem.
Studying the recommended bibliography: 5.00 hours/sem.
Class (sem. 5) The preparation for a Class: 2.00 hours/sem.
The preparation for a test: 5.00 hours/sem.
contact hours: 15.00 hours/sem.
Finishing/Studying tasks: 5.00 hours/sem.
Advice (sem. 5) The preparation for Advice: 1.00 hours/sem.
The participation in Advice: 1.00 hours/sem.
Credit (sem. 5) The preparation for a Credit: 5.00 hours/sem.
The written credit: 5.00 hours/sem.
Lecture (sem. 6) The preparation for a test: 5.00 hours/sem.
contact hours: 15.00 hours/sem.
complementing/reading through notes: 5.00 hours/sem.
Studying the recommended bibliography: 2.00 hours/sem.
Class (sem. 6) The preparation for a Class: 4.00 hours/sem.
The preparation for a test: 4.00 hours/sem.
contact hours: 15.00 hours/sem.
Finishing/Studying tasks: 3.00 hours/sem.
Laboratory (sem. 6) The preparation for a Laboratory: 2.00 hours/sem.
The preparation for a test: 1.00 hours/sem.
contact hours: 15.00 hours/sem.
Finishing/Making the report: 2.00 hours/sem.
Advice (sem. 6) The preparation for Advice: 1.00 hours/sem.
The participation in Advice: 1.00 hours/sem.
Exam (sem. 6) The preparation for an Exam: 5.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture Passing the Lecture - OW: Factor related to the term Course test OW / Credit w=1 - 1-st term; w=0.9 - 2-nd term; w=0.8 - 3rd term. w=0.8 - 3-rd term;
Class Excercises are taken as seminar. The mark in the excercises on the base 1 test points - OC.
The final grade Final mark receives a credit for a course in Bioprocess Eng. - sem (5) - according to formula: Sem. 5: OK = 0,7 OW + 0,3 OC
Lecture Passing the Lecture = evaluation in an exam. Factor related to the term Exam / Credit w=1 - 1-st term; w=0.9 - 2-nd term; w=0.8 - 3rd term. w=0.8 - 3-rd term;
Class Excercises are taken as seminar. The mark in the excercises on the base 1 test - OC. rules as in sem. 5
Laboratory Laboratories – exercises performed by a group under the supervision of an academic teacher. Passing the laboratory based on the grade from the colloquium - OL. The condition for passing the laboratory is also the correct preparation of reports from all exercises.
The final grade Final mark in an exam for a course in Bioprocessing.- sem (6) - according to formula: Sem. 6: OK = 0,65 OE + 0,2 OC + 0,15 OL

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : yes

Available materials : In the credits of exercises: YES J. Bandrowski. M. Palica, "Materiały pomocnicze do ćwiczeń i i projektów z Inżynierii chemicznej"; During the exam; NO

The contents of the module are associated with the research profile: yes

1 D. Antos; I. Poplewska; P. Zimoch Dissociation events during processing of monoclonal antibodies on strong cation exchange resins 2022
2 D. Antos; A. Bajek-Bil; M. Balawejder; M. Olbrycht; W. Piątkowski; I. Poplewska Development of a Route to the Most Active Nafronyl Stereoisomer by Coupling Asymmetric Synthesis and Chiral Chromatography Separation 2021
3 D. Antos; W. Piątkowski; I. Poplewska A case study of the mechanism of unfolding and aggregation of a monoclonal antibody in ion exchange chromatography 2021
4 D. Antos; M. Balawejder; H. Lorenz; M. Olbrycht; W. Piątkowski; I. Poplewska; A. Seidel-Morgenstern Cooperative Kinetic Model to Describe Crystallization in Solid Solution Forming Systems 2019
5 D. Antos; M. Kołodziej; A. Łyskowski; W. Piątkowski; I. Poplewska; P. Szałański Determination of protein crystallization kinetics by a through-flow small-angle X-ray scattering method 2019