logo
Item card
logo

Spectroscopic methods of analysis

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical Technology

The area of study: technical sciences

The profile of studing:

The level of study: first degree study

Type of study: full time

discipline specialities : Chemical analysis in industry and environment, Chemical and bioprocess engineering, Organic and polymer technology

The degree after graduating from university: Bachelor of Science (BSc)

The name of the module department : Department of Physical Chemistry

The code of the module: 205

The module status: mandatory for the speciality Chemical analysis in industry and environment

The position in the studies teaching programme: sem: 7 / W30 L50 / 7 ECTS / Z

The language of the lecture: Polish

The name of the coordinator 1: Dorota Naróg, PhD, Eng.

office hours of the coordinator: środa 10.00-11.30 piatek 12.15-13.45

The name of the coordinator 2: Lucjan Dobrowolski, PhD, Eng.

office hours of the coordinator: Poniedziałek: 11.00 - 12.30 Czwartek: 12.15 - 13.45

semester 7: Karol Hęclik, PhD, Eng.

The aim of studying and bibliography

The main aim of study: The aim of the course is to broaden the knowledge on the interpretation of the spectra, obtained by various spectroscopic techniques, to identification of organic compounds and their mixtures, and the transfer of knowledge and skills in advanced methods of instrumental analysis.

The general information about the module: The module is realized in 7 semester and includes 30 hours of lectures and 60 hours laboratory. The module ends with a pass.

others: Programy edukacyjne do nauczania spektroskopii molekularnej dostępne bezpłatnie w sieci Internet

Bibliography required to complete the module
Bibliography used during lectures
1 J. Sadlej Spektroskopia molekularna WNT Warszawa. 2002
2 C.N. Rao Spektroskopia elektronowa związków organicznych PWN, Warszawa. 1982
3 Z. Kęcki Podstawy spektroskopii molekularnej PWN, Warszawa. 1998
4 J. Stankowski, W. Hilczer Wstęp do spektroskopii rezonansów magnetycznych PWN, Warszawa. 2005
5 W. Zieliński, praca zbiorowa Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych WNT Warszawa. 1995
6 R.M. Silverstein, F.X. Webster, D.J. Kiemle Spektroskopowe metody identyfikacji związków organicznych PWN 2007.
Bibliography used during classes/laboratories/others
1 A. Cygański Metody spektroskopowe w chemii analitycznej WNT, Warszawa . 2002
2 W. Zieliński, praca zbiorowa Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych WNT Warszawa. 1995
3 L.A. Kazycina, N.B. Kuplerska Metody spektroskopowe wyznaczania struktury związków organicznych PWN, Warszawa. 1989
4 M. Szafran, Z. Dega-Szafran Określenie struktury związków organicznych metodami spektroskopowymi. Tablice i ćwiczenia PWN, Warszawa. 1988
5 Spectral Data Base System for organic compounds, National Institute of Advanced Industrial Science and Technology (AIST), Japan, http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi .
Bibliography to self-study
1 Lekcje multimedialne modułu „Struktura i właściwości związków chemicznych” dostępne dla studentów PR Z na portalu edukacyjnym www.e-chemia.pl .
2 . R.T. Morrisom, R.N. Boyd, Chemia Organiczna, Wydawnictwo Naukowe PWN, Warszawa . 1998
3 B. Bobrański, Chemia organiczna, Wydawnictwo Naukowe PWN, Warszawa. 1992

Basic requirements in category knowledge/skills/social competences

Formal requirements: Is required basic knowledge of physical chemistry, instrumental analysis and organic chemistry

Basic requirements in category knowledge: Is required basic knowledge of physical and organic chemistry, and basics of instrumental analysis.

Basic requirements in category skills: The student is able to analyze the influence of electronic effects on the distribution of the electron density of chemical bonds, and he knows the principle of the UV-Vis, IR and MS spectrometers.

Basic requirements in category social competences: The ability to cooperate and work in a team.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 knows: the theory of UV-Vis, IR, Raman, fluorescence and EPR spectroscopies, the ionization method used in mass spectrometry. He has knowledge of the practical application of spectroscopic methods and of the tandem.techniques. lecture written examination K_W13++
P6S_WG
02 knows how to use the UV-Vis spectroscopy. He recognizes the functional groups on the basis of infrared spectroscopic data and he can analyse IR spectra. The student knows how to prepare samples for analysis in IR spectroscopy. He knows how to analyse MS spectra of simple organic compounds. laboratory test, writting raport K_U21+++
P6S_UW
03 is able to identify the simple organic compounds based on nuclear magnetic resonance spectroscopy data and he can analyze the 1H-NMR spectra. He can use the spectral methods to analyze the structure and properties of molecules in the liquid phase. laboratory test, writting raport K_U21++
P6S_UW
04 can perform identification of selected organic compounds using spectroscopic techniques. laboratory test, writting raport K_U11+++
K_K01++
P6S_KK
P6S_KO
P6S_KR
P6S_UO
P6S_UW
05 keeps the fire regulations and BHP, student uses the protective clothing laboratory performance observation K_U14+
P6S_UW
06 knows basis for the analysis of macromolecular compounds using tandem mass spectrometry (LC/MS/MS) laboratory test, writting raport K_U21++
P6S_UW

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
7 TK01 Application of theory of point groups in spectroscopy, Franck–Condon principle, vibronic coupling. Transition probability and selections rules of spectroscopy transitions. Optical transitions in external fields: Stark effect, Zeeman effect. Electron paramagnetic resonance spectroscopy (EPR). Raman spectroscopy, resonance Raman scattering. Electronic-vibration-rotation spectra. Fluorescence and phosphorescence. Advance techniques of mass spectrometry: ionization (ESI, MALDI APCI) and MS/MS technics. W01-W08 MEK01
7 TK02 Characteristic group rate for the chemical compounds in vibration IR and Raman spectroscopy. Influence of inductive effect, resonance effect and intermolecular interactions on the spectra parameters absorption spectra. Parameters defining the value of spectral parameters in 1H-NMR i 13C-NMR spectra. Design of 1H-NMR spectra for the systems with different coupling constants. Recording techniques for 13C-NMR spectra. Two-dimensional (2D) NMR spectroscopy. Design of 13C-NMR NBD spectra using the additive rules. Identification of chemical compounds using the standard spectra directory. Determination of chemical compounds structure using empiric spectra-structural correlation IR, RA, UV/Vis, NMR, MS. WO9-W015 MEK01
7 TK03 Electron spectra of organic compounds. Charge-transfer spectra of complex compound. L01 MEK02 MEK05
7 TK04 Infrared spectroscopy techniques in the analysis of solid and liquid samples. Influence of hydrogen bonding on the infrared spectra. L02 MEK02 MEK05
7 TK05 Analysis of the structure in based on the IR spectra . Influence of external and internal agents on the bond parameters of selected functional groups. L03 MEK02 MEK05
7 TK06 Analysis of the mass spectra of organic compounds. L04 MEK02 MEK05
7 TK07 Analysis of Uv-vis, IR, MS and 1H-NMR spectra of simple organic compounds. L05 MEK03 MEK04 MEK05
7 TK08 Tandem mass spectrometry (LC/MS/MS) in the analysis of flavonoids. L06 MEK01 MEK06
7 TK09 Ccharacteristic group frequencies of chemical compounds. Comparative analysis of IR and Raman bands derived from the same oscillators L07 MEK02
7 TK10 Additivity ruls in UV-Vis spectroscopy. L08 MEK02
7 TK11 Designing of 1H-NMR spectra for systems with one coupling constant. Designing of 1H-NMR spectra for systems with various coupling constants. Determination of organic compounds structure based on 1H-NMR spectra. L09 MEK03
7 TK12 Prediction of chemical shifts of C13 atoms signals based on empirical correlations. Determination of organic copmponds structure from 13C-NMR spectra (NBD, DEPT and SFORD). L10 MEK03
7 TK13 Interpretation of 1H, 1H COSY, 13C and 1H COSY, NOESY spectra. L11 MEK03
7 TK14 Recognition of chemical compounds determination from spectral data. Application of spectral methods in chemical reaction monitoring. L12 MEK03 MEK04
7 TK15 Determination of chemical compounds structure from set of spectra registered by variuos spectral techniques: IR, RA, UV/Vis, NMR and MS L13 MEK04

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 7) contact hours: 30.00 hours/sem.
complementing/reading through notes: 10.00 hours/sem.
Studying the recommended bibliography: 15.00 hours/sem.
Laboratory (sem. 7) The preparation for a Laboratory: 10.00 hours/sem.
The preparation for a test: 15.00 hours/sem.
contact hours: 50.00 hours/sem.
Finishing/Making the report: 15.00 hours/sem.
Advice (sem. 7) The participation in Advice: 2.00 hours/sem.
Credit (sem. 7) The preparation for a Credit: 25.00 hours/sem.
The written credit: 3.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture A written test including the content of lectures and laboratories. The test includes theoretical part and calculation problems. The mark (OW) depends on the score gained: 3.0 (50.0%-60.0%) MP ; 3.5 (60.1%-70.0%) MP; 4.0 (70.1%-80.0%) MP; 4,5 (80.1%-90.0%) MP; 5.0 (90.1%-100%) MP. MP denotes the full score.
Laboratory Passing all exercises based on the grades from the test and reports on the measurements taken (OL); the mark for the test is calculated using the following coefficients: 1.0 - for a positive mark obtained in the first term; 0.9 - for the evaluation on the second term and 0.8 - for the third term
The final grade The final mark in the module (K) is calculated according to the formula: K= w 0,5 OW + w 0,5 OL; where: OW, OL denote positive marks for lecture test and laboratory practice, respectively, w - coefficient for delay, w =1.0 when a passing mark is obtained in due time, w=0.9 for a first resit, w=0.8 for a second resit. The final mark is rounded according to WKZJK.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; I. Zarzyka Kompozyt polimerowy oraz sposób wytwarzania kompozytu polimerowego 2024
2 D. Naróg; A. Sobkowiak Electrochemistry of Flavonoids 2023
3 L. Dobrowolski; K. Hęclik; M. Jaromin; I. Zarzyka A Practical Test of Distance Learning During the COVID-19 Lockdown 2023
4 M. Bakar; A. Białkowska; A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; B. Krzykowska; M. Longosz; I. Zarzyka Polymer Biocompositions and Nanobiocomposites Based on P3HB with Polyurethane and Montmorillonite 2023
5 M. Chmiela; A. Czerniecka-Kubicka; L. Dobrowolski; W. Gonciarz; K. Hęclik; M. Longosz; A. Szyszkowska; D. Trzybiński; K. Woźniak; A. Wróbel; I. Zarzyka Molecular Modeling of 3-chloro-3-phenylquinoline-2,4-dione, Crystal Structure and Cytotoxic Activity for developments in a potential new drug 2023
6 D. Naróg; A. Sobkowiak Electrochemical Investigation of some Flavonoids in Aprotic Media 2022
7 M. Bakar; A. Białkowska; A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; B. Krzykowska; I. Zarzyka Biobased poly(3-hydroxybutyrate acid) composites with addition of aliphatic polyurethane based on polypropylene glycols 2022
8 M. Bakar; A. Białkowska; A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; K. Leś; M. Pyda; M. Walczak; I. Zarzyka Thermally stable biopolymer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes – preparation and properties 2021
9 A. Białkowska; L. Dobrowolski; L. Wianowski; I. Zarzyka Physical blowing agents for polyurethanes 2020
10 A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; I. Zarzyka Biodegradowalne kompozyty polimerowe na osnowie P3HB 2020
11 D. Naróg Electrochemical study of quercetin in the presence of galactopyranose: Potential application to the electrosynthesis of glycoconjugates of quinone/quinone methide of quercetin 2020
12 R. Bartosik; L. Dobrowolski; K. Hęclik; A. Klasek; A. Lycka; I. Zarzyka New mono- and diesters with imidazoquinolinone ring- synthesis, structure characterization and molecular modeling 2020
13 B. Dębska; L. Dobrowolski; M. Inger; M. Jaromin; M. Wilk Komputerowo-wspomagane obliczanie bilansu masowego i cieplnego instalacji chemicznej 2019