logo
Karta przedmiotu
logo

Inżynieria wytwarzania: Technologia maszyn

Podstawowe informacje o zajęciach

Cykl kształcenia: 2019/2020

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Zarządzanie i inżynieria produkcji

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: pierwszego stopnia

Forma studiów: niestacjonarne

Specjalności na kierunku: Informatyka w zarządzaniu przedsiębiorstwem, Logistyka produkcji, Systemy zapewnienia jakości produkcji

Tytuł otrzymywany po ukończeniu studiów: inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Technologii Maszyn i Inżynierii Produkcji

Kod zajęć: 1967

Status zajęć: obowiązkowy dla programu Informatyka w zarządzaniu przedsiębiorstwem, Logistyka produkcji, Systemy zapewnienia jakości produkcji

Układ zajęć w planie studiów: sem: 5 / W15 L10 / 4 ECTS / E

Język wykładowy: polski

Imię i nazwisko koordynatora: dr hab. inż. Rafał Kluz

Terminy konsultacji koordynatora: termin konsultacji podany w harmonogramie pracy jednostki

semestr 5: dr hab. inż. prof. PRz Andrzej Dzierwa

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Zapoznanie studentów z podstawowymi zagadnieniami z zakresu technologii maszyn zarówno w teorii jak i w praktyce

Ogólne informacje o zajęciach: Przedmiot obowiązkowy na kierunku Mechanika i Budowa Maszyn

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Mieczysław Feld Technologia budowy maszyn PWN Warszawa. 2000
2 Mieczysław Korzyński Podstawy technologii maszyn Skrypt PRz. 2008
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 Skoczylas L. Symbolika pomocy warsztatowych w dokumentacji technologicznej procesów obróbki skrawaniem Wydawnictwa Politechniki Rzeszowskiej. 2013
2 Wodecki J, Podstawy projektowania procesów technologicznych części maszyn i urządzeń Wydawnictwa Politechniki Śląskiej. 2013
Literatura do samodzielnego studiowania
1 Mieczysław Feld Podstawy projektowania procesów technologicznych typowych części maszyn WNT Warszawa. 2009

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Rejestracja na semestrze siódmym

Wymagania wstępne w kategorii Wiedzy: Znajomość podstawowych zagadnień z zakresu podstaw obróbki cieplnej, metrologii oraz odlewnictwa

Wymagania wstępne w kategorii Umiejętności: Umiejętność opracowywania i analizy uzyskiwanych wyników

Wymagania wstępne w kategorii Kompetencji społecznych: Umiejętność pracy w zespole

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK
01 Ma pogłebioną wiedzę z zakresu projektowania procesu technologicznego obróbki typowych części wykład egzamin cz. pisemna K_W06++
K_W13++
P6S_WG
02 Posiada wiedzę na temat metod badawczych stosowanych w technologii maszyn. Potrafi rozwiązywać zadania inżynierskie dotyczące wyboru baz obróbkowych i półfabrykatów oraz doboru naddatków obróbkowych i parametrów procesu wykorzystując metody analityczne i eksperymentalne wykład, laboratorium egzamin cz. pisemna, raport pisemny K_W06++
K_W13+
K_U01++
P6S_UW
P6S_WG
03 Posiada umiejętność prowadzenia badań służących doskonaleniu konkretnych procesów technologicznych z wykorzystaniem standardowych metod i narzędzi laboratorium zaliczenie ustne laboratorium K_U01++
K_K01+
P6S_UU
P6S_UW

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
5 TK01 Proces produkcyjny i proces technologiczny. Typy produkcji W01 MEK01 MEK03
5 TK02 Normowanie procesów technologicznych. Półfabrykaty części maszyn. Naddatki na obróbkę W02-W03 MEK01 MEK02
5 TK03 Zasady ustalania części podczas obróbki W04 MEK01 MEK02
5 TK04 Dokładność obróbki części maszyn. Metody badań i kontroli W05 MEK01 MEK02
5 TK05 Omówienie zasad BHP,. Struktura procesu technologicznego L01 MEK01 MEK03
5 TK06 Porównanie dokładności i naddatków na obróbkę w różnych półfabrykatach L02 MEK02 MEK03
5 TK07 Błędy obróbki partii przedmiotów L03 MEK02 MEK03
5 TK08 Dobór parametrów ustawczych procesu nagniatania L04 MEK02 MEK03

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 5) Przygotowanie do kolokwium: 20.00 godz./sem.
Godziny kontaktowe: 15.00 godz./sem.
Uzupełnienie/studiowanie notatek: 4.00 godz./sem.
Studiowanie zalecanej literatury: 15.00 godz./sem.
Laboratorium (sem. 5) Przygotowanie do laboratorium: 10.00 godz./sem.
Przygotowanie do kolokwium: 8.00 godz./sem.
Godziny kontaktowe: 10.00 godz./sem.
Dokończenia/wykonanie sprawozdania: 8.00 godz./sem.
Konsultacje (sem. 5) Przygotowanie do konsultacji: 8.00 godz./sem.
Udział w konsultacjach: 4.00 godz./sem.
Egzamin (sem. 5)

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Na egzaminie sprawdza się realizację efektu kształcenia - MEK01 i MEK02. Student na egzaminie otrzymuje dwa pytania otwarte i dwa zadania obliczeniowe. Za wyczerpującą odpowiedź na pytanie i poprawne rozwiązanie zadania student otrzymuje 5pkt. W sumie student może zgromadzić maksymalnie 20pkt. Kryteria weryfikacji efektu MEK01 są następujące: ocenę dostateczną uzyskuje student, który uzyska 50-70% punktów, ocenę dobry 71-90% punktów, ocenę bardzo dobry powyżej 90% punktów
Laboratorium Laboratorium weryfikuje umiejętności studenta określone modułowym efektem kształcenia MEK02 i MEK03. Kryteria weryfikacji efektu kształcenia:: Na ocenę 3 student zna rodzaje półfabrykatów, strukturę procesu technologicznego obróbki, przeznaczenie i rodzaje uchwytów obróbkowych, czynniki wpływające na dokładność obróbki oraz pojęcie błędu zamocowania Na ocenę 4 student posiada umiejętności i wiedzę wymaganą do uzyskania oceny 3 oraz dodatkowo: potrafi scharakteryzować poszczególne rodzaje półfabrykatów, potrafi zdefiniować podstawowe elementy struktury procesu technologicznego, zna rodzaje elementów ustalających oraz potrafi zdefiniować sztywność układu OUPN Na ocenę 5 student posiada umiejętności i wiedzę wymaganą do uzyskania oceny 4 oraz dodatkowo: potrafi dobrać półfabrykat dla konkretnej części, potrafi opracować uproszczony proces technologiczny dla części typu wał w produkcji seryjnej, potrafi określić sposób ustawienia przedmiotu obrabianego w wykonywanej operacji, potrafi wyznaczyć sztywność przedmiotu obrabianego przy danym sposobie ustawienia oraz zna sposoby zmniejszanie błędu zamocowania Na zaliczeniu student otrzymuje trzy pytania. Jeżeli odpowie jedno pytanie otrzymuje ocenę 3,0, jeżeli odpowie na 2 pytania otrzymuje ocenę 4,0 natomiast jeżelu odpowiedzi na trzy pytania otrzymuje ocenę 5,0
Ocena końcowa Warunkiem zaliczenia modułu jest osiągnięcie wszystkich efektów modułowych i zaliczenie wszystkich form zajęć. Ocena końcowa wyznaczana jest jako średnia ważona oceny z egzaminu z wagą 0,6 i laboratorium z wagą 0,4.

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 K. Antosz; M. Bucior; K. Faes; R. Kluz; A. Kubit; T. Trzepieciński Analytical Approach for Forecasting the Load Capacity of the EN AW-7075-T6 Aluminum Alloy Joints Created Using RFSSW Technology 2024
2 K. Antosz; W. Bochnowski; M. Bucior; A. Dzierwa; R. Kluz; K. Ochał Effect of Diamond Burnishing on the Properties of FSW Joints of EN AW-2024 Aluminum Alloys 2023
3 M. Bucior; R. Kluz; A. Kubit; K. Ochał The Effect of Brushing on Residual Stress and Surface Roughness of EN AW-2024-T3 Aluminum Alloy Joints Welded Using the FSW Method 2023
4 R. Kluz Wyznaczenie i kształtowanie poziomu montowalności systemów montażowych 2023
5 M. Bucior; K. Burnat; R. Kluz; A. Kubit; K. Ochałek Effect of Nanofillers on the Mechanical Properties of Vinyl Ester Resin Used as a Carbon Fiber Reinforced Polymer Matrix 2022
6 M. Bucior; K. Jurczak; R. Kluz; A. Kubit; K. Ochał; T. Trzepieciński The Effect of Shot Peening on Residual Stress and Surface Roughness of AMS 5504 Stainless Steel Joints Welded Using the TIG Method 2022
7 M. Bucior; W. Habrat; R. Kluz; K. Krupa; J. Sęp Multi-criteria optimization of the turning parameters of Ti-6Al-4V titanium alloy using the Response Surface Methodology 2022
8 R. Kluz; A. Kubit; K. Ochałek; J. Slota; T. Trzepieciński Multi-Criteria Optimisation of Friction Stir Welding Parameters for EN AW-2024-T3 Aluminium Alloy Joints 2022
9 K. Antosz; M. Bucior; R. Kluz; T. Trzepieciński Modelling of the Effect of Slide Burnishing on the Surface Roughness of 42CrMo4 Steel Shafts 2021
10 K. Antosz; M. Bucior; R. Kluz; T. Trzepieciński Modelling the Influence of Slide Burnishing Parameters on the Surface Roughness of Shafts Made of 42CrMo4 Heat-Treatable Steel 2021
11 K. Antosz; M. Bucior; R. Kluz; T. Trzepieciński Modelowanie wpływu parametrów obróbki nagniataniem na chropowatość powierzchni wałków ze stali 42CRMO4 2021
12 M. Bucior; J. Jaworski; R. Kluz Testing durability of a broach 2021
13 K. Antosz; A. Gola; R. Kluz; T. Trzepieciński Predicting the error of a robot’s positioning repeatability with artificial neural networks 2020
14 K. Antosz; R. Kluz Application of selected balancing methods for analysis and evaluation of the working efficiency of the assembly line on the example of a selected product 2020
15 M. Bucior; K. Faes; W. Jurczak ; R. Kluz; A. Kubit Analysis of the properties of RFSSW lap joints of alclad 7075-t6 aluminum alloy sheets under static and dynamic loads 2020
16 M. Bucior; R. Kluz; A. Kubit Effect of temperature on the shear strength of GFRP aluminium alloy 2024-T3 single lap joint 2020
17 M. Bucior; R. Kluz; A. Kubit Robotization of the process of removal of the gating system in an enterprise from the automotive industry 2020
18 M. Bucior; R. Kluz; A. Kubit; K. Ochał Analysis of the Possibilities of Improving the Selected Properties Surface Layer of Butt Joints Made Using the FSW Method 2020
19 M. Bucior; R. Kluz; A. Kubit; K. Ochał Effect of the brushing process on the state of the surface layer of butt joints made of using the FSW method 2020
20 K. Antosz; R. Kluz Simulation of Flexible Manufacturing Systems as an Element of Education Towards Industry 4.0 2019
21 K. Antosz; R. Kluz; T. Trzepieciński Forecasting the Mountability Level of a Robotized Assembly Station 2019
22 K. Faes; R. Kluz; A. Kubit; T. Trzepieciński Polyoptimisation of the refill friction stir spot welding parameters applied in joining 7075-T6 Alclad aluminium alloy sheets used in aircraft components 2019
23 M. Bucior; R. Kluz; A. Kubit Identifying optimal FSW process parameters for 2024 Al alloy butt joints 2019
24 M. Bucior; R. Kluz; A. Kubit; K. Ochał; Ł. Święch Application of the 3D Digital Image Correlation to the Analysis of Deformation of Joints Welded With the FSW Method After Shot Peening 2019
25 R. Kluz; D. Latała; L. Skoczylas Grinding of conical surfaces of lighting columns with abrasive tools 2019
26 W. Bochnowski; K. Faes; R. Kluz; A. Kubit; T. Trzepieciński A weighting grade-based optimization method for determining refill friction stir spot welding process parameters 2019
27 W. Bochnowski; M. Bucior; R. Kluz; A. Kubit; R. Perłowski Experimental research of the weakening of the fuselage skin by RFSSW single row joints 2019