logo
Item card
logo

Water resources for hydrogen energy

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Hydrogen technologies

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: past time

discipline specialities :

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Water Supply and Sewage Systems

The code of the module: 16595

The module status: mandatory for teaching programme

The position in the studies teaching programme: sem: 3 / W6 C6 L6 / 2 ECTS / Z

The language of the lecture: Polish

The name of the coordinator 1: Krzysztof Boryczko, PhD, Eng.

The name of the coordinator 2: Alicja Puszkarewicz, PhD, Eng.

The aim of studying and bibliography

The main aim of study: The aim of education is to acquire knowledge about the quantity, quality and methods of water treatment used to produce hydrogen using the electrochemical method.

The general information about the module: To acquaint students with the basic information on the functioning of collective water supply systems and the possibility of using surface and tap water for the purposes of hydrogen energy. The issues related to water intake as well as its preparation in terms of quality for the needs of hydrogen production will be discussed.

Bibliography required to complete the module
Bibliography used during lectures
1 Knapik K., Bajer J. Wodociągi Wydawnictwo PK. 2010
2 Mielcarzewicz E. Obliczenia systemów zaopatrzenia w wodę Arkady. 2001
3 Kowal A. Świderska - Bróż Oczyszczanie wody PWN Wrocław. 2009
Bibliography used during classes/laboratories/others
1 Krzysztof Boryczko, Janusz Rak, Bezpieczeństwo systemów wodociągowych. Dywersyfikacja zasobów wody Oficyna Wydawnicza Politechniki Rzeszowskiej. 2017
2 Puszkarewicz A., Kaleta J. Uzdatnianie wody do celów specjalnych Wyd. P.Rz.. 2013

Basic requirements in category knowledge/skills/social competences

Formal requirements: Completion of previous semesters

Basic requirements in category knowledge: Knowledge of the basics of electrochemical hydrogen production, the role of water in the environment and economy.

Basic requirements in category skills: ability to use a spreadsheet, graphic drawing. Ability to perform basic laboratory activities.

Basic requirements in category social competences: Self-awareness of the need to improve their professional skills.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 He can make a water consumption balance in a given system of collective water supply. He is able to perform an engineering task - a design of a technological system of a water production process using literature and available catalogs. lecture, accounting exercises, laboratory test K_W01+
K_W06+
K_U08++
P7S_UW
P7S_WG
02 He knows the issues of water supply diversification. He knows the basic unit processes in technological systems producing water of the required quality for the purposes of hydrogen energy. lecture, accounting exercises, laboratory. test, laboratory report. K_W07+
K_U04+++
K_U07+
P7S_UW
P7S_WG
03 Can assess the possibility of using the existing water supply system for the production of hydrogen. Has the knowledge to solve technological problems related to the production of the required water quality. lecture, accounting exercises, laboratory. test, lab report K_W07++
K_U05+
K_K02++
K_K03+++
P7S_KO
P7S_KR
P7S_UW
P7S_WG

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
3 TK01 Basic water supply. Water intake. Water supply network and pumping stations. Water consumption balance. Water law permits. Diversification of water resources. Possibilities of expanding the existing water supply systems with a hydrogen production installation. W 1÷5 MEK01 MEK02 MEK03
3 TK02 Water demand calculations. Water consumption balance. Calculation of indicators of diversification of water resources. Ć1÷10 MEK01
3 TK03 Characteristics of unit processes in technological systems of water treatment plants for the purposes of hydrogen energy. Classification of station elements and devices. Analysis of technological systems of water treatment plants. W 5 - 10 MEK01 MEK02 MEK03
3 TK04 Ionite demineralization of water. Membrane water demineralization. Analysis of the operation of a two-stage water demineralization station. L 1-10 MEK02 MEK03

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 3) The preparation for a test: 5.00 hours/sem.
contact hours: 6.00 hours/sem.
complementing/reading through notes: 2.00 hours/sem.
Studying the recommended bibliography: 2.00 hours/sem.
Class (sem. 3) The preparation for a Class: 2.00 hours/sem.
contact hours: 6.00 hours/sem.
Finishing/Studying tasks: 2.00 hours/sem.
Laboratory (sem. 3) The preparation for a Laboratory: 1.00 hours/sem.
contact hours: 6.00 hours/sem.
Finishing/Making the report: 2.00 hours/sem.
Advice (sem. 3)
Credit (sem. 3)

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture
Class
Laboratory lab raport
The final grade

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 A. Puszkarewicz; A. Skwarczyńska-Wojsa Removal of Acetaminophen from Aqueous Solutions in an Adsorption Process 2024
2 K. Boryczko; B. Kowalska; D. Kowalski Układ cyrkulacji wody w ślepych odgałęzieniach sieci wodociągowej 2024
3 K. Boryczko; B. Kowalska; D. Kowalski Układ podłączania zaworu w cyrkulacyjnej sieci wodociągowej 2024
4 K. Boryczko; I. Piegdoń; K. Pietrucha-Urbanik; J. Rak; D. Szpak; J. Żywiec Odporność systemów wodociągowych na zagrożenia terrorystyczne 2024
5 K. Boryczko; J. Rak; M. Stręk Assessment of Water Volume Allocation in Network Water Supply Tanks Using Hulbert Method 2024
6 K. Boryczko; G. Kalda; K. Rybalka; Y. Sokolan Перспективи розвитку альтернативної енергетики в Україні 2023
7 K. Boryczko; I. Piegdoń; K. Pietrucha-Urbanik; J. Rak; D. Szpak; B. Tchórzewska-Cieślak; J. Żywiec An Approach to Assess the Water Resources Reliability and Its Management 2023
8 K. Boryczko; I. Piegdoń; K. Pietrucha-Urbanik; J. Rak; D. Szpak; B. Tchórzewska-Cieślak; J. Żywiec Water supply safety assessment considering the water supply system resilience 2023
9 K. Boryczko; J. Rak; D. Szpak; B. Tchórzewska-Cieślak Zagrożenia obiektów wodociągowych 2023
10 K. Boryczko; J. Rak; M. Stręk Metoda oceny alokacji objętości wody w sieciowych zbiornikach wodociągowych na terenie województwa podkarpackiego według wskaźnika Simpsona 2023
11 A. Chacuk; Z. Modrzejewska; A. Puszkarewicz; A. Skwarczyńska-Wojsa Sorption of calcium by chitosan hydrogel: Kinetics and equilibrium 2022
12 K. Boryczko Wybrane metody wspomagania pracy operatora systemu zbiorowego zaopatrzenia w wodę 2022
13 K. Boryczko; D. Szpak; B. Tchórzewska-Cieślak; J. Żywiec The Use of a Fault Tree Analysis (FTA) in the Operator Reliability Assessment of the Critical Infrastructure on the Example of Water Supply System 2022
14 K. Boryczko; I. Piegdoń; K. Pietrucha-Urbanik; J. Rak; D. Szpak; B. Tchórzewska-Cieślak; J. Żywiec Niezawodność i bezpieczeństwo infrastruktury krytycznej na przykładzie systemów zaopatrzenia w wodę 2022
15 K. Boryczko; D. Kowalski; J. Żywiec Analysis of the Negative Daily Temperatures Influence on the Failure Rate of the Water Supply Network 2021
16 K. Boryczko; I. Piegdoń; D. Szpak; J. Żywiec Risk Assessment of Lack of Water Supply Using the Hydraulic Model of the Water Supply 2021
17 K. Boryczko; I. Piegdoń; J. Rak; D. Szpak; B. Tchórzewska-Cieślak; J. Żywiec Risk Assessment of Water Intakes in South-Eastern Poland in Relation to the WHO Requirements for Water Safety Plans 2021
18 K. Boryczko; I. Piegdoń; K. Pietrucha-Urbanik; J. Rak; D. Szpak; B. Tchórzewska-Cieślak Możliwość aplikacji matrycowych metody analizy ryzyka w gospodarce wodnej 2021
19 K. Boryczko; J. Rak; D. Szpak; J. Żywiec Metody matrycowe wykorzystywane w analizie ryzyka ujęć wody 2021
20 J. Kaleta; A. Puszkarewicz The Efficiency of the Removal of Naphthalene from Aqueous Solutions by Different Adsorbents 2020
21 K. Boryczko Ocena skutków wyłączenia strategicznej magistrali 2020
22 K. Boryczko; B. Tchórzewska-Cieślak Safety analysis in water supply systems 2020
23 K. Boryczko; I. Piegdoń; J. Rak; A. Studziński; D. Szpak; B. Tchórzewska-Cieślak; J. Żywiec Analiza ryzyka dla ujęć wody powierzchniowej w Sieniawie i Szczepańcowej. 2020
24 K. Boryczko; J. Rak Method for Assessment of Water Supply Diversification 2020
25 A. Domoń; J. Kaleta; D. Papciak; A. Puszkarewicz The Use of Chalcedonite as a Biosorption Bed in the Treatment of Groundwater 2019
26 J. Kaleta; A. Puszkarewicz Adsorption of Chromium (VI) on Raw and Modified Carpathian Diatomite 2019
27 J. Kaleta; A. Puszkarewicz Chromium (VI) Adsorption on Modified Activated Carbons 2019
28 J. Kaleta; A. Puszkarewicz Influence of Water Hardness on the Effectiveness of Coagulation of Humic Compounds 2019
29 J. Kaleta; D. Papciak; A. Puszkarewicz The Influence of the City of Przemyśl on the Quality of Water in the San River 2019
30 K. Boryczko; I. Piegdoń; J. Rak; M. Stręk; D. Szpak; B. Tchórzewska-Cieślak; J. Żywiec Opracowanie analizy ryzyka dla ujęcia i Stacji Uzdatniania Wody dla miasta Rzeszowa 2019
31 K. Boryczko; J. Rak; D. Szpak; B. Tchórzewska-Cieślak Analiza ankiet dotyczących gotowości wdrożenia Planów Bezpieczeństwa Wodnego w przedsiębiorstwach wodociągowych 2019