logo
Item card
logo

Fuel cells

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Hydrogen technologies

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: past time

discipline specialities :

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Technology and Materials Chemistry

The code of the module: 16585

The module status: mandatory for teaching programme

The position in the studies teaching programme: sem: 2 / W18 L9 / 3 ECTS / Z

The language of the lecture: Polish

The name of the coordinator 1: Marek Potoczek, DSc, PhD, Eng.

The name of the coordinator 2: Tomasz Pacześniak, PhD, Eng.

The aim of studying and bibliography

The main aim of study:

The general information about the module:

Teaching materials: Instrukcje do ćwiczeń laboratoryjnych

Bibliography required to complete the module
Bibliography used during lectures
1 Chmielniak T. Technologie energetyczne WNT Warszawa. 2021
2 Pampuch R. Współczesne materiały ceramiczne Wyd. AGH Kraków. 2005
Bibliography used during classes/laboratories/others
1 Chmielniak T Technologie energetyczne WNT Warszawa. 2021
2 Pampuch R. Współczesne materiały ceramiczne Wyd. AGH, Kraków. 2005
3 Potoczek M. Kształtowanie mikrostruktury piankowych materiałów korundowych Rzeszów, OWPRz. 2012
4 M.F. Ashby Dobór materiałów w projektowaniu inżynierskim WNT Warszawa. 1998
Bibliography to self-study
1 Junwei Wu, Xingbo Liu Recent Development of SOFC Metallic Interconnect Journal of Materials Science & Technology vol. 26, pp. 293-305 Elsevier. 2010
2 Arnab Choudhury n , H. Chandra, A. Arora Application ofsolid oxidefuel celltechnology fo rpower generation—A review, Renewable andSustainable Energy Reviews 20(2013)430–442, Elsevier. 2013

Basic requirements in category knowledge/skills/social competences

Formal requirements: Seventh semester registration

Basic requirements in category knowledge: Knowledge of the fundamentals of materials science. Knowledge of physical chemistry

Basic requirements in category skills: Ability to perform laboratory activities

Basic requirements in category social competences: Awareness of the need to work individually and as part of a team

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Has knowledge of fuel cells lecture colloquium K_W07+++
P7S_WG
02 Knows the principles of direct conversion of hydrogen or its compounds into electricity lecture collogium K_W09+++
P7S_WG
03 Knows the construction and principle of operation of devices for direct conversion of hydrogen into electricity. lecture, laboratory collogium K_W08++
P7S_WG
04 Knows the potential applications of fuel cells in various sectors of the economy lecture, laboratory collogium K_W08+++
P7S_WG
05 Be able to investigate the physical and chemical properties of selected fuel cell materials laboratory collogium K_U04+++
P7S_UW
06 Be able to evaluate the suitability of materials for fuel cell construction lab collogium K_U05+++
P7S_UW
07 Understands the need to improve professional qualifications lecture, lab collogium K_U11++
P7S_UO
P7S_UU
08 makes a critical analysis of how existing technical solutions work lecture, laboratory collogium K_U07++
P7S_UW
09 Is responsible for his/her own work and can work in a group laboratory writing raport K_K02+
P7S_KO
10 is able to correctly define priorities for the implementation of specific tasks laboratory writing raport K_K03+
P7S_KR

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
2 TK01 Fuel cell principle, history and present day. Types of fuel cells W.01 MEK01 MEK02
2 TK02 Types of fuel cells W02-W.03 MEK03 MEK05
2 TK03 Electrode reactions in fuel cells W.04-W.08 MEK04 MEK06
2 TK04 Construction and principle of operation of solid oxide fuel cells. W.09-W.10 MEK02 MEK08
2 TK05 Mechanism of ionic and electron defect transport in solid electrolyte. W.10-W12 MEK03
2 TK06 Anode and cathode materials in solid oxide fuel cells W.13-W.14, L3 MEK05 MEK09
2 TK07 Metallic interconnectors and requirements for interconnector materials. Applications of solid oxide fuel cells in modern industry (power, automotive, aerospace, military, etc.). W.15 MEK07
2 TK08 Study of the physicochemical properties of the solid electrolyte L4 MEK03 MEK10
2 TK09 Thermodynamics of fuel cell. W.04-W.08, L1-L2 MEK01 MEK03 MEK09
2 TK10 Application of fuel cells other than fuel oxide ones. W02-W05, L1-L2 MEK01 MEK03
2 TK11 Calalysts of electrode reactions in fuel cells. W3-W5 MEK01 MEK03 MEK06

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 2) The preparation for a test: 10.00 hours/sem.
contact hours: 18.00 hours/sem.
complementing/reading through notes: 5.00 hours/sem.
Studying the recommended bibliography: 3.00 hours/sem.
Laboratory (sem. 2) The preparation for a Laboratory: 10.00 hours/sem.
The preparation for a test: 10.00 hours/sem.
contact hours: 9.00 hours/sem.
Finishing/Making the report: 9.00 hours/sem.
Advice (sem. 2) The preparation for Advice: 2.00 hours/sem.
Credit (sem. 2) The preparation for a Credit: 8.00 hours/sem.
The written credit: 4.00 hours/sem.
The oral credit: 2.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture The grading scale depends on the sum of the points obtained from two partial tests covering the topics of the lecture. 50-60% dst (3.0);61-70% dst+ (3.5);71-80% db (4.0);81-90% db+ (4.5);91-100% bdb (5.0)
Laboratory The arithmetic mean of the grades for the individual admission tests in the laboratories
The final grade Final mark (K) K=0.5wC + 0.5wW, where C - pass mark credit of the exercises, W - pass mark credit of the lecture, w - factor for the credit deadline w=1.0 first deadline, w=0.9 second deadline.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 K. Balawender; K. Bulanda; K. Kroczek; B. Lewandowski; M. Oleksy; S. Orkisz; M. Potoczek; J. Szczygielski; Ł. Uram Polylactide-based composites with hydroxyapatite used in rapid prototyping technology with potential for medical applications 2023
2 P. Chmielarz; T. Pacześniak; K. Rydel-Ciszek; A. Sobkowiak Bio-Inspired Iron Pentadentate Complexes as Dioxygen Activators in the Oxidation of Cyclohexene and Limonene 2023
3 T. Brylewski; J. Dąbek; M. Potoczek Oxidation behavior of Ti2AlC MAX-phase foams in the temperature range of 600–1000 °C 2023
4 A. Adamczyk; T. Brylewski; Z. Grzesik; M. Januś; W. Jastrzębski; S. Kluska ; K. Kyzioł ; M. Potoczek; S. Zimowski Plasmochemical Modification of Crofer 22APU for Intermediate-Temperature Solid Oxide Fuel Cell Interconnects Using RF PA CVD Method 2022
5 A. Chmielarz; P. Colombo; G. Franchin; E. Kocyło; M. Potoczek Hydroxyapatite-coated ZrO2 scaffolds with a fluorapatite intermediate layer produced by direct ink writing 2021
6 P. Błoniarz; D. Maksym; J. Muzart; T. Pacześniak; A. Pokutsa; A. Zaborovskyi Cyclohexane oxidation: relationships of the process efficiency with electrical conductance, electronic and cyclic voltammetry spectra of the reaction mixture 2021
7 P. Chmielarz; A. Miłaczewska; T. Pacześniak; K. Rydel-Ciszek; A. Sobkowiak ‘Oxygen-Consuming Complexes’–Catalytic Effects of Iron–Salen Complexes with Dioxygen 2021
8 W. Frącz; T. Pacześniak; I. Zarzyka Rigid polyurethane foams modified with borate and oxamide groups-Preparation and properties 2021
9 E. Kocyło; M. Krauz; M. Potoczek; A. Tłuczek ZrO2 Gelcast Foams Coated with Apatite Layers 2020
10 P. Błoniarz; J. Muzart; T. Pacześniak; A. Pokutsa; S. Tkach; A. Zaborovskyi Sustainable oxidation of cyclohexane and toluene in the presence of affordable catalysts: Impact of the tandem of promoter/oxidant on process efficiency 2020
11 P. Błoniarz; O. Fliunt; Y. Kubaj; T. Pacześniak; A. Pokutsa; A. Zaborovskyi Sustainable oxidation of cyclohexane catayzed by a VO(acac)2 - oxalic acid tandem: the electrochemical motive of the process efficiency 2020
12 P. Błoniarz; P. Chmielarz; T. Pacześniak; K. Rydel-Ciszek; A. Sobkowiak; K. Surmacz; I. Zaborniak Iron-Based Catalytically Active Complexes in Preparation of Functional Materials 2020
13 P. Błoniarz; Y. Kubaj; D. Maksym; J. Muzart; T. Pacześniak; A. Pokutsa; A. Zaborovskyi Versatile and Affordable Approach for Tracking the Oxidative Stress Caused by the Free Radicals: the Chemical Perception 2020
14 A. Chmielarz; P. Colombo; H. Elsayed; T. Fey; M. Potoczek Direct ink writing of three dimensional Ti2AlC porous structures 2019