logo
Item card
logo

Diffusion separation processes

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical and process engineering

The area of study: technical sciences

The profile of studing:

The level of study: first degree study

Type of study: full time

discipline specialities : Hydrogen technologies, Processing of polymer materials , Product design and engineering of pro-ecological processes

The degree after graduating from university: Bachelor of Science (BSc)

The name of the module department : Department of Chemical Engineering and Process Control

The code of the module: 15929

The module status: mandatory for the speciality Hydrogen technologies

The position in the studies teaching programme: sem: 5, 6 / W45 C30 L15 P15 / 9 ECTS / E,E

The language of the lecture: Polish

The name of the coordinator: Wojciech Zapała, DSc, PhD, Eng.

The aim of studying and bibliography

The main aim of study: Obtaining by the student's the knowledge about the theory and design of the most important diffusive and heat - diffusive operations applied to separation processes. Obtaining by the student's the knowledge about the theory and design of the most important diffusive and heat - diffusive operations applied to separation processes.

The general information about the module: The syllabus contained in this sheet concern the "HYDROGEN TECHNOLOGIES" specialty. The course is conducted in Polish in semesters 5 and 6. Semester 5: 30h lectures, 15h classes. Semester 6: 15h lectures, 15h classes, 15h projects 15h laboratories. In both semesters module ends with an exam.

Bibliography required to complete the module
Bibliography used during lectures
1 R. Koch, A. Kozioł Dyfuzyjno – cieplny rozdział substancji WNT W-wa 1994 WNT W-wa. 1994
2 A. Selecki, L. Gradoń Podstawowe procesy przemysłu chemicznego WNT W-wa . 1985
3 T. Hobler Dyfuzyjny ruch masy i absorbery WNT W-wa. 1976
4 R. Zarzycki i inni Absorpcja i absorbery WNT W-wa. 1987
5 J. Bandrowski, L. Troniewski Destylacja i rektyfikacja PWN W-wa. 1980
6 Z. Ziołkowski Ekstrakcja cieczy w przemyśle chemicznym WNT W-wa. 1980
7 M. Serwiński Zasady Inżynierii chemicznej i procesowej WNT W-wa. 1982
8 G.K. Fiłonienko, P.D. Lebiediew Urządzenia suszarnicze PWT W-wa. 1956
9 R. Petrus, G. Aksielrud, J. Gumnicki, W. Piątkowski Wymiana masy ciało stałe – ciecz OW PRz. 1998
10 R. Rautenbach Procesy membranowe WNT. 1996
Bibliography used during classes/laboratories/others
1 R. Zarzycki i inni Zadania rachunkowe z inżynierii chemicznej PWN W-wa. 1980
2 T. Kudra i inni Zbiór zadań z podstaw teoretycznych inżynierii chemicznej i procesowej WNT W-wa. 1985
3 J. Bandrowski i inni Materiały pomocnicze do ćwiczeń i projektów z inżynierii chemicznej Skrypt Politechniki Śląskiej, Gliwice. 1993
4 R. Petrus i inni Inżynieria chemiczna - laboratorium Politechnika Rzeszowska. 1990
5 K. Pawłow, P. Romankow, A.Noskow Przykłady i zadania z zakresu aparatury i inżynierii chemicznej WNT. 1981
6 W. Ciesielczyk, K. Kupiec Obliczenia w inżynierii chemicznej cz. IV. Obliczanie procesów przenoszenia masy. Politechnika Krakowska. 2014
7 W. Ciesielczyk, K. Kupiec Obliczenia w inżynierii chemicznej cz. III, Teoria procesów przenoszenia masy. Politechnika Krakowska. 2014

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for a given semester.

Basic requirements in category knowledge: The student has ordered knowledge of mathematics, physics, chemistry, covering all issues related to the application of scientific methods in the type of engineering issues.

Basic requirements in category skills: He has ordered, basic knowledge in computer science that allows for efficient handling of basic utility programs such as Matlab, Origin, Excel, etc.

Basic requirements in category social competences: It has a sense of responsibility related to the performance of the engineering profession.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Has the knowledge about the theory and design of unit operations in chemical engineering. lecture written and oral exam K_W03+++
K_W05++
K_U01+++
K_U09+
P6S_UW
P6S_WG
02 Has the knowledge and ability to solve mathematical problems related to the design of basic unit operations of chemical engineering. solving classes Final test K_W05+++
K_U05+++
K_K01+
P6S_KK
P6S_UW
P6S_WG
03 Has the ability to design basic unit processes of chemical engineering. project Evaluation projects carried out individually K_U06+++
K_U08+++
K_U19++
P6S_UU
P6S_UW
04 Has the ability to service and identify the basic chemical apparatus laboratory Evaluation performed exercises and possibly theoretical test K_W03+++
K_U06+++
K_U08+
P6S_UW
P6S_WG

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
5 TK01 Distillation and rectification. Liquid-vapor equilibrium for two-component and multi-component systems. Simple equilibrium distillation. Simple differential distillation. Steam and molecular distillation. Periodic and continuous two-component rectification: balances, operating lines, minimum and maximum return, determination of the number of theoretical plates by graphical and analytical methods. Rectification of multi-component mixtures. Design issues: selection of the type of apparatus, characteristics of the shelves and their efficiency, kinetic mass transfer coefficients, packed columns. Absorption. Characteristics of the process. Gas-liquid balance. Mass balance of the process and operating line. Methods for calculating the height of absorbers. Hydrodynamic problems and the diameter of the apparatus. Apparatus. Drying processes. Drying thermodynamics. Movement of mass and heat during drying. Ways of conducting the process. Drying apparatus. Crystallization. Material and energy balances, applications, apparatus and design. The topics of the exercises are closely related to the topics presented in the lecture. W30C15 MEK01 MEK02 MEK03 MEK04
6 TK01 Liquid-liquid extraction. Physicochemical basics of extraction: solubility, equilibrium, partition coefficient, solvent selectivity, drip system mechanism. Calculation of mass transfer coefficients in the extraction process. One-step extraction. Co-current and counter-current multistage extraction. Determination of the minimum, maximum and optimal amount of solvent. Calculation of the number of steps and their efficiency. Column extraction in ternary systems: calculating the height and diameter of a column. Apparatus. Membrane processes. Types of membranes, applications, process modeling and design issues, apparatus. The topics of the exercises are closely related to the topics presented in the lecture. Laboratory: Five laboratory exercises related to the subject matter. Projects: Students design a mass exchanger working in a fluid-fluid system: rectification column and / or absorber. W15C15P15L15 MEK01 MEK02 MEK03 MEK04

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 5) The preparation for a test: 6.00 hours/sem.
contact hours: 30.00 hours/sem.
complementing/reading through notes: 2.00 hours/sem.
Studying the recommended bibliography: 30.00 hours/sem.
Class (sem. 5) The preparation for a Class: 7.00 hours/sem.
The preparation for a test: 20.00 hours/sem.
contact hours: 15.00 hours/sem.
Advice (sem. 5)
Exam (sem. 5) The preparation for an Exam: 10.00 hours/sem.
Lecture (sem. 6) The preparation for a test: 5.00 hours/sem.
contact hours: 15.00 hours/sem.
complementing/reading through notes: 5.00 hours/sem.
Studying the recommended bibliography: 5.00 hours/sem.
Class (sem. 6) The preparation for a Class: 10.00 hours/sem.
The preparation for a test: 20.00 hours/sem.
contact hours: 15.00 hours/sem.
Laboratory (sem. 6) The preparation for a Laboratory: 1.00 hours/sem.
The preparation for a test: 20.00 hours/sem.
contact hours: 15.00 hours/sem.
Project/Seminar (sem. 6) The preparation for projects/seminars: 1.00 hours/sem.
contact hours: 15.00 hours/sem..
Doing the project/report/ Keeping records: 3.00 hours/sem.
The preparation for the presentation: 1.00 hours/sem.
Advice (sem. 6)
Exam (sem. 6) The preparation for an Exam: 10.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture Lecture: Completion of the course based on an evaluation of the exam - OW
Class Classes: completion on the basis of the evaluation of the test - OC
The final grade
Lecture Lecture: Completion of the course based on an evaluation of the exam - OW
Class Classes: completion on the basis of the evaluation of the test - OC
Laboratory Laboratory: on the basis of the performed exercises and reports - OL
Project/Seminar Project: completion on the basis of completed projects - OP
The final grade Score: OK = 60%OW+30%OC+10%OP. First term: w=1, second term: w=0,9, third term: w=0,8.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 M. Przywara; R. Przywara; W. Zapała Numerical Investigation on Flowability of Pulverized Biomass Using the Swelling Bed Model 2024
2 A. Bukowska; T. Galek; M. Przywara; R. Przywara; W. Zapała Brief Analysis of Selected Sorption and Physicochemical Properties of Three Different Silica-Based Adsorbents 2023
3 I. Opaliński; M. Przywara; R. Przywara; W. Zapała Mechanical Properties of Solid Biomass as Affected by Moisture Content 2023
4 M. Chutkowski; I. Opaliński; M. Przywara; R. Przywara; W. Zapała Influence of Moisture Content and Composition of Agricultural Waste with Hard Coal Mixtures on Mechanical and Rheological Properties 2023
5 M. Przywara; R. Przywara; W. Zapała Właściwości adsorpcyjne wybranych polarnych faz stacjonarnych 2023
6 Ł. Byczyński; M. Kosińska-Pezda; E. Woźnicka; L. Zapała; W. Zapała Synteza oraz badania składu i właściwości związków: 3-hydroksyflawonu, chryzyny oraz sulfonowych pochodnych chryzyny i kwercetyny z jonami Mn(II) 2023
7 L. Zapała; W. Zapała; P. Ziobrowski Studies on the retention behavior of quercetin, phenol and caffeine as test substances on selected neutral and charged Hydrophilic Interaction Liquid Chromatography stationary phases 2022
8 M. Chutkowski; J. Kamińska; M. Przywara; W. Zapała; P. Ziobrowski Studies on the Effects of Process Conditions on Separation of B1, B2 and B3 Vitamin Mixture Using HILIC and RPLC Chromatography 2022
9 M. Chutkowski; M. Przywara; R. Przywara; W. Zapała Column Testing in Quantitative Determination of Raw Heparin in Porcine Intestinal Mucus Extracts by Liquid Chromatography – Preliminary Investigations 2022
10 M. Kosińska-Pezda; U. Maciołek; E. Woźnicka; L. Zapała; W. Zapała Synteza, badania składu i właściwości spektroskopowych kompleksów wybranych jonów metali przejściowych z kwasem niflumowym 2022
11 W. Zapała; P. Ziobrowski Analiza mechanizmu retencji kofeiny, kwercetyny oraz fenolu w wybranych układach chromatografii oddziaływań hydrofilowych (HILIC) 2022
12 M. Chutkowski; L. Zapała; W. Zapała; P. Ziobrowski Analiza mechanizmu retencji kwercetyny w wybranych układach chromatografii oddziaływań hydrofilowych (HILIC) 2021
13 M. Chutkowski; M. Kosińska-Pezda; M. Przywara; L. Zapała; W. Zapała; P. Ziobrowski Analysis of adsorption energy distribution in selected hydrophilic-interaction chromatography systems with amide, amine, and zwitterionic stationary phases 2021
14 Ł. Byczyński; E. Ciszkowicz; M. Kosińska-Pezda; K. Lecka-Szlachta; U. Maciołek; E. Woźnicka; L. Zapała; W. Zapała Green synthesis of niflumic acid complexes with some transition metal ions (Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II)). Spectroscopic, thermoanalytical and antibacterial studies 2021
15 Ł. Byczyński; M. Kosińska-Pezda; U. Maciołek; E. Woźnicka; L. Zapała; W. Zapała Thermal study, temperature diffraction patterns and evolved gas analysis during pyrolysis and oxidative decomposition of novel ternary complexes of light lanthanides with mefenamic acid and 1,10-phenanthroline 2021
16 M. Chutkowski; L. Zapała; W. Zapała; P. Ziobrowski Influence of Mobile Phase Composition and Temperature on the Retention Behavior of Selected Test Substances in Diol-type Column 2020
17 M. Chutkowski; M. Przywara; W. Zapała Modelowanie i analiza płynięcia materiału rozdrobionego podczas ścinania w reometrze pierścieniowym z wykorzystaniem metody elementów dyskretnych 2020
18 M. Kosińska; E. Woźnicka; L. Zapała; W. Zapała Response of the DFT study to the calculations of selected microdissociation constants of anthranilic acid and its derivatives 2019
19 Ł. Byczyński; M. Chutkowski; E. Ciszkowicz; M. Kosińska; K. Lecka-Szlachta; E. Woźnicka; L. Zapała; W. Zapała Comparison of spectral and thermal properties and antibacterial activity of new binary and ternary complexes of Sm(III), Eu(III) and Gd (III) ions with N-phenylanthranilic acid and 1,10-phenanthroline 2019