logo
Karta przedmiotu
logo

Telekomunikacja

Podstawowe informacje o zajęciach

Cykl kształcenia: 2021/2022

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Lotnictwo i kosmonautyka

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: pierwszego stopnia

Forma studiów: stacjonarne

Specjalności na kierunku: Awionika, Pilotaż, Samoloty, Silniki lotnicze, Zarządzanie ruchem lotniczym

Tytuł otrzymywany po ukończeniu studiów: inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Awioniki i Sterowania

Kod zajęć: 15173

Status zajęć: obowiązkowy dla specjalności Zarządzanie ruchem lotniczym

Układ zajęć w planie studiów: sem: 6 / W30 L30 / 5 ECTS / Z

Język wykładowy: polski

Imię i nazwisko koordynatora 1: prof. dr hab. inż. Tomasz Rogalski

Imię i nazwisko koordynatora 2: dr inż. Damian Kordos

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Celem kształcenia jest nabycie przez studentów wiedzy dotyczącej telekomunikacji i umiejętności obsługi narzędzi zawiązanych z tematyką radiową (analizatory widma, generatory sygnałów radiowych, itp.)

Ogólne informacje o zajęciach: W ramach zajęć student(ka) poznaje urządzenia i systemy radiowe. Student(ka) poznaje fizyczne i techniczne podstawy dotyczące funkcjonowania urządzeń radiowych oraz ich eksploatacji.

Wykaz literatury, wymaganej do zaliczenia zajęć

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne:

Wymagania wstępne w kategorii Wiedzy:

Wymagania wstępne w kategorii Umiejętności:

Wymagania wstępne w kategorii Kompetencji społecznych:

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 6) Godziny kontaktowe: 30.00 godz./sem.
Laboratorium (sem. 6) Godziny kontaktowe: 30.00 godz./sem.
Konsultacje (sem. 6)
Zaliczenie (sem. 6)

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład
Laboratorium
Ocena końcowa

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 G. Drupka; T. Rogalski; Ł. Wałek Analiza zmian w ruchu lotniczym na przykładzie wybranych rejonów FIR europejskiej przestrzeni powietrznej po wystąpieniu konfliktu zbrojnego na terytorium Ukrainy 2024
2 G. Drupka; T. Rogalski; Ł. Wałek Metody wyznaczania pozycji bezzałogowego statku powietrznego na pasie w fazie startu 2024
3 M. Dojka; K. Jakubik; T. Rogalski; Ł. Wałek Automatic take-off control system 2023
4 M. Korkosz; S. Noga; T. Rogalski Analysis of the mechanical limitations of the selected high-speed electric motor 2023
5 S. Noga; D. Nowak; T. Rogalski; P. Rzucidło The use of vision system to determine lateral deviation from landing trajectory 2023
6 T. Rogalski Transport lotniczy w obliczu wyzwań XXI wieku 2023
7 Z. Gomółka; D. Kordos; P. Krzaczkowski; P. Rzucidło; B. Twaróg; E. Zesławska Vision System Measuring the Position of an Aircraft in Relation to the Runway during Landing Approach 2023
8 B. Dołęga; G. Kopecki; D. Kordos; P. Rzucidło Układ spadochronowy 2022
9 D. Kordos; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego kołującego po płycie lotniskowej oraz sposób sterowania kołowaniem statku powietrznego z wykorzystaniem tego systemu 2022
10 G. Kopecki; D. Kordos; D. Nowak; T. Rogalski The PAPI Lights-Based Vision System for Aircraft Automatic Control during Approach and Landing 2022
11 K. Doerffer; P. Doerffer; P. Dymora; P. Flaszynski; S. Grigg; M. Jurek; D. Kordos; B. Kowal; M. Mazurek; T. Rogalski; R. Śliwa; R. Unnthorsson The Latest Advances in Wireless Communication in Aviation, Wind Turbines and Bridges 2022
12 T. Rogalski; P. Rzucidło; P. Szwed Estimation of Atmospheric Gusts Using Integrated On-Board Systems of a Jet Transport Airplane - Flight Simulations 2022
13 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski Design advancements for an integrated mission management system for small air transport vehicles in the COAST project 2022
14 Z. Gomolka; D. Kordos; P. Rzucidło; B. Twarog; E. Zeslawska Use of a DNN in Recording and Analysis of Operator Attention in Advanced HMI Systems 2022
15 B. Brukarczyk; P. Kot; D. Nowak; T. Rogalski; P. Rzucidło Fixed Wing Aircraft Automatic Landing with the Use of a Dedicated Ground Sign System 2021
16 B. Dołęga; P. Grzybowski; G. Kopecki; D. Kordos; D. Nowak; P. Rzucidło; A. Tomczyk; Ł. Wałek System redundantnego sterowania i nawigacji, zwłaszcza do samolotów bezzałogowych, ultralekkich załogowych i lekkich sportowych 2021
17 G. Dec; A. Majka; T. Rogalski; D. Rzońca; S. Samolej Regular graph-based free route flight planning approach 2021
18 G. Jaromi; T. Kapuściński; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba In-Flight Tests of Intruder Detection Vision System 2021
19 J. Beran; V. Di Vito; P. Grzybowski; T. Kabrt; P. Masłowski; M. Montesarchio; T. Rogalski Flight management enabling technologies for single pilot operations in Small Air Transport vehicles in the COAST project 2021
20 K. Maciejowska; S. Noga; T. Rogalski Vibration analysis of an aviation engine turbine shaft shield 2021
21 P. Bąk; T. Rogalski; P. Rzucidło; J. Szura; K. Warzocha Transformative Use of Additive Technology in Design and Manufacture of Hydraulic Actuator for Fly-by-Wire System 2021
22 S. Noga; J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in an Immelmann manoeuvre 2021
23 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski A concept for an Integrated Mission Management System for Small Air Transport vehicles in the COAST project 2021
24 G. Drupka; A. Majka; T. Rogalski Automated flight planning method to facilitate the route planning process in predicted conditions 2020
25 G. Jaromi; D. Kordos; A. Paw; T. Rogalski; P. Rzucidło; P. Szczerba Simulation studies of a vision intruder detection system 2020
26 J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in a spin maneuver 2020
27 T. Kapuściński; T. Rogalski; P. Rzucidło; P. Szczerba; Z. Szczerba A Vision-Based Method for Determining Aircraft State during Spin Recovery 2020
28 Z. Gomolka; D. Kordos; E. Zeslawska The Application of Flexible Areas of Interest to Pilot Mobile Eye Tracking 2020
29 Z. Gomółka; D. Kordos; B. Twaróg; E. Zeslawska Registration and Analysis of a Pilot’s Attention Using a Mobile Eyetracking System 2020
30 D. Nowak; T. Rogalski; D. Rzońca; S. Samolej; Ł. Wałek Control System for Aircraft Take-off and Landing Based on Modified PID controllers 2019
31 G. Drupka; T. Rogalski Free Route Airspace-nowe regulacje przestrzeni powietrznej 2019
32 G. Jaromi; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba Wybrane elementy badań wizyjnego układu antykolizyjnego dla lekkich oraz bezzałogowych statków powietrznych 2019
33 J. Prusik; T. Rogalski Sterowanie trajektorią podczas lotu akrobacyjnego 2019
34 S. Pluta; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego znajdującego się na płycie lotniskowej 2019