logo
Karta przedmiotu
logo

Metody informatyczne w lotnictwie

Podstawowe informacje o zajęciach

Cykl kształcenia: 2021/2022

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Lotnictwo i kosmonautyka

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: pierwszego stopnia

Forma studiów: stacjonarne

Specjalności na kierunku: Awionika, Pilotaż, Samoloty, Silniki lotnicze, Zarządzanie ruchem lotniczym

Tytuł otrzymywany po ukończeniu studiów: inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Awioniki i Sterowania

Kod zajęć: 15168

Status zajęć: obowiązkowy dla programu Zarządzanie ruchem lotniczym

Układ zajęć w planie studiów: sem: 5 / W30 L30 / 5 ECTS / Z

Język wykładowy: polski

Imię i nazwisko koordynatora 1: dr hab. inż. prof. PRz Tomasz Rogalski

Imię i nazwisko koordynatora 2: dr inż. Dariusz Nowak

Imię i nazwisko koordynatora 3: dr inż. Piotr Szczerba

Cel kształcenia i wykaz literatury

Główny cel kształcenia:

Ogólne informacje o zajęciach:

Wykaz literatury, wymaganej do zaliczenia zajęć

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne:

Wymagania wstępne w kategorii Wiedzy:

Wymagania wstępne w kategorii Umiejętności:

Wymagania wstępne w kategorii Kompetencji społecznych:

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 5) Godziny kontaktowe: 30.00 godz./sem.
Laboratorium (sem. 5) Godziny kontaktowe: 30.00 godz./sem.
Konsultacje (sem. 5)
Zaliczenie (sem. 5)

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład
Laboratorium
Ocena końcowa

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 G. Kopecki; P. Rzucidło; P. Szczerba; P. Szwed Analysis of Stochastic Properties of MEMS Accelerometers and Gyroscopes Used in the Miniature Flight Data Recorder 2024
2 K. Pytel; K. Szczerba; P. Szczerba; Z. Szczerba Acceleration-Insensitive Pressure Sensor for Aerodynamic Analysis 2023
3 K. Pytel; K. Szczerba; P. Szczerba; Z. Szczerba; M. Szumski Wind Tunnel Experimental Study on the Efficiency of Vertical-Axis Wind Turbines via Analysis of Blade Pitch Angle Influence 2023
4 M. Dojka; K. Jakubik; T. Rogalski; Ł. Wałek Automatic take-off control system 2023
5 M. Korkosz; S. Noga; T. Rogalski Analysis of the mechanical limitations of the selected high-speed electric motor 2023
6 S. Noga; D. Nowak; T. Rogalski; P. Rzucidło The use of vision system to determine lateral deviation from landing trajectory 2023
7 T. Rogalski Transport lotniczy w obliczu wyzwań XXI wieku 2023
8 D. Kordos; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego kołującego po płycie lotniskowej oraz sposób sterowania kołowaniem statku powietrznego z wykorzystaniem tego systemu 2022
9 D. Nowak System automatycznego lądowania dla bezzałogowych statków powietrznych wykorzystujący wizyjne sygnały pomiarowe 2022
10 G. Kopecki; D. Kordos; D. Nowak; T. Rogalski The PAPI Lights-Based Vision System for Aircraft Automatic Control during Approach and Landing 2022
11 K. Doerffer; P. Doerffer; P. Dymora; P. Flaszynski; S. Grigg; M. Jurek; D. Kordos; B. Kowal; M. Mazurek; T. Rogalski; R. Śliwa; R. Unnthorsson The Latest Advances in Wireless Communication in Aviation, Wind Turbines and Bridges 2022
12 K. Szczerba; P. Szczerba; Z. Szczerba Przetwornik ciśnienia różnicowego 2022
13 K. Szczerba; P. Szczerba; Z. Szczerba Sensitivity of Piezoresistive Pressure Sensors to Acceleration 2022
14 T. Rogalski; P. Rzucidło; P. Szwed Estimation of Atmospheric Gusts Using Integrated On-Board Systems of a Jet Transport Airplane - Flight Simulations 2022
15 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski Design advancements for an integrated mission management system for small air transport vehicles in the COAST project 2022
16 B. Brukarczyk; P. Kot; D. Nowak; T. Rogalski; P. Rzucidło Fixed Wing Aircraft Automatic Landing with the Use of a Dedicated Ground Sign System 2021
17 B. Dołęga; P. Grzybowski; G. Kopecki; D. Kordos; D. Nowak; P. Rzucidło; A. Tomczyk; Ł. Wałek System redundantnego sterowania i nawigacji, zwłaszcza do samolotów bezzałogowych, ultralekkich załogowych i lekkich sportowych 2021
18 G. Dec; A. Majka; T. Rogalski; D. Rzońca; S. Samolej Regular graph-based free route flight planning approach 2021
19 G. Jaromi; T. Kapuściński; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba In-Flight Tests of Intruder Detection Vision System 2021
20 J. Beran; V. Di Vito; P. Grzybowski; T. Kabrt; P. Masłowski; M. Montesarchio; T. Rogalski Flight management enabling technologies for single pilot operations in Small Air Transport vehicles in the COAST project 2021
21 K. Maciejowska; S. Noga; T. Rogalski Vibration analysis of an aviation engine turbine shaft shield 2021
22 K. Szczerba; P. Szczerba; Z. Szczerba Skaner cisnień różnicowych 2021
23 P. Bąk; T. Rogalski; P. Rzucidło; J. Szura; K. Warzocha Transformative Use of Additive Technology in Design and Manufacture of Hydraulic Actuator for Fly-by-Wire System 2021
24 S. Noga; J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in an Immelmann manoeuvre 2021
25 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski A concept for an Integrated Mission Management System for Small Air Transport vehicles in the COAST project 2021
26 G. Drupka; A. Majka; T. Rogalski Automated flight planning method to facilitate the route planning process in predicted conditions 2020
27 G. Jaromi; D. Kordos; A. Paw; T. Rogalski; P. Rzucidło; P. Szczerba Simulation studies of a vision intruder detection system 2020
28 J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in a spin maneuver 2020
29 T. Kapuściński; T. Rogalski; P. Rzucidło; P. Szczerba; Z. Szczerba A Vision-Based Method for Determining Aircraft State during Spin Recovery 2020
30 D. Nowak; T. Rogalski; D. Rzońca; S. Samolej; Ł. Wałek Control System for Aircraft Take-off and Landing Based on Modified PID controllers 2019
31 G. Drupka; P. Rzucidło; P. Szczerba; Z. Szczerba Vision system supporting the pilot on variable light conditions 2019
32 G. Drupka; T. Rogalski Free Route Airspace-nowe regulacje przestrzeni powietrznej 2019
33 G. Jaromi; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba Wybrane elementy badań wizyjnego układu antykolizyjnego dla lekkich oraz bezzałogowych statków powietrznych 2019
34 J. Prusik; T. Rogalski Sterowanie trajektorią podczas lotu akrobacyjnego 2019
35 K. Szczerba; P. Szczerba; Z. Szczerba Przetwornik ciśnienia różnicowego 2019
36 K. Szczerba; P. Szczerba; Z. Szczerba Skaner cisnień różnicowych 2019
37 S. Pluta; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego znajdującego się na płycie lotniskowej 2019