The main aim of study:
Introduction to the basics of mathematical modeling and selected sections of numerical methods.
The general information about the module:
The subject matter of the classes chosen by students. In the second semester, 30 hours of lectures are realized.
Teaching materials:
podane na stronie https://wojciechjablonski.v.prz.edu.pl/
1 | A. Witecek, L.Cedro, R. Farana | Modelowanie matematyczne. Podstawy. | Pol. Swiętokrzyska, Kielce, . | 2010 |
2 | M.Holodniok, M.Kubiczek | Metody analizy nelinearnich dynamickich modelu | Academia, Praha. | 1986 |
3 | U. Foryś | Modelowanie matematyczne w biologii i medycynie | Uniwersytet Warszawski. | 2011 |
4 | S.J.Farlow | Partial differential equations for Scientists and Engineers | Wiley, Inc.. | 1982 |
5 | Lawrence C. Evans | Równania różniczkowe cząstkowe | PWN Warszawa. | 2002 |
6 | P. Strzelecki | Krótkie wprowadzenie do równań różniczkowych cząstkowych. | PWN Warszawa. | 2006 |
7 | A. Turowicz | Teoria macierzy | Uczel. Wyd. Nauk.-Dydakt. Kraków. | 2005 |
1 | H. Guściowa, M. Sadowska | Repetytorium z algebry liniowej | PWN Warszawa 1977. | - |
2 | J. Klukowski, I. Nabiałek | Algebra dla studentów | PWN Warszawa. | 1999 |
3 | A. I. Kostrykin | Zbiór zadań z algebry | PWN Warszawa. | 1995 |
4 | I. Nabiałek | Zadania z algebry liniowej | WNT Warszawa. | 2006 |
5 | J. Rutkowski | Algebra liniowa w zadaniach | PWN Warszawa. | 2012 |
Formal requirements:
Basic requirements in category knowledge:
Mastering the basics of mathematical analysis, matrix calculus, differential equations and computational packages.
Basic requirements in category skills:
Passing courses in mathematical analysis 1,2, linear algebra, differential equations, and computational packages.
Basic requirements in category social competences:
ability to acquire knowledge, ability to work in a group
MEK | The student who completed the module | Types of classes / teaching methods leading to achieving a given outcome of teaching | Methods of verifying every mentioned outcome of teaching | Relationships with KEK | Relationships with OEK |
---|---|---|---|---|---|
MEK01 | The student has knowledge concerning algebraic structures (group, ring, field, linear space, algebra) and can apply it in problems and exercises. | lecture | written test |
K-W01+ K-W02++ K-W03++ K-W04++ K-U01++ K-K02+ K-K04+ K-K07+ |
W01 W03 W06 U01 U02 U05 K01 K02 K03 K04 K06 |
MEK02 | The Student is familiar with advanced concepts and tools of linear algebra (algebra of operators, dual space, invariant subspace and eigenvector, Jordan canonical form) and can apply it in problems and exercises. | lecture | written test |
K-W01+ K-W02+ K-W03+ K-W04++ K-W05++ K-W07++ K-U01+ K-U02++ K-U03+ K-K01+ |
W01 W02 W03 W06 U01 U02 U03 U05 U07 K01 |
Sem. | TK | The content | realized in | MEK |
---|---|---|---|---|
2 | TK01 | W01-W03 | MEK01 | |
2 | TK02 | W04-W07 | MEK02 | |
2 | TK03 | W7-W10 | MEK02 | |
2 | TK04 | W11-W15 | MEK01 MEK02 |
The type of classes | The work before classes | The participation in classes | The work after classes |
---|---|---|---|
Lecture (sem. 2) | contact hours:
30.00 hours/sem. |
complementing/reading through notes:
5.00 hours/sem. Studying the recommended bibliography: 10.00 hours/sem. |
|
Advice (sem. 2) | The preparation for Advice:
1.00 hours/sem. |
The participation in Advice:
2.00 hours/sem. |
|
Credit (sem. 2) | The preparation for a Credit:
10.00 hours/sem. |
The written credit:
2.00 hours/sem. |
The type of classes | The way of giving the final grade |
---|---|
Lecture | the execution of problems proposed after lectures and the positive evaluation of written test |
The final grade |
Required during the exam/when receiving the credit
(-)
Realized during classes/laboratories/projects
(-)
Others
(-)
Can a student use any teaching aids during the exam/when receiving the credit : no