logo
Item card
logo

Stereochemistry

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Biotechnology

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: full time

discipline specialities : Laboratory diagnostics in biotechnology, Pharmaceutical biotechnology, Process and bioprocess engineering, Purification and analysis of biotechnological products

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Organic Chemistry

The code of the module: 1407

The module status: mandatory for teaching programme Process and bioprocess engineering, Purification and analysis of biotechnological products

The position in the studies teaching programme: sem: 1 / W15 L15 / 3 ECTS / Z

The language of the lecture: Polish

The name of the coordinator 1: Prof. Jacek Lubczak, DSc, PhD, Eng.

office hours of the coordinator: W terminach podanych w harmonogramie pracy jednostki.

The name of the coordinator 2: Elżbieta Chmiel-Szukiewicz, PhD, Eng.

office hours of the coordinator: W terminach podanych w harmonogramie pracy jednostki.

The aim of studying and bibliography

The main aim of study: The student should obtain knowledge of the general issues of stereochemistry in bioorganic transformations.

The general information about the module: The module is implemented in the first semester. There are 15 hours of lectures and 15 hours laboratory. Module ends with a credit.

Bibliography required to complete the module
Bibliography used during lectures
1 Patrick G. Chemia organiczna PWN, Warszawa . 2002
2 Morris D. Stereochemia PWN, Warszawa . 2008
3 Siemion Z. Biostereochemia PWN, Warszawa. 1985
4 Potapow W.M. Stereochemia PWN, Warszawa . 1986
5 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN Warszawa . 1988
Bibliography used during classes/laboratories/others
1 Gawroński J., Gawrońska K., Kacprzak K., Kwit M. Współczesna synteza organiczna. Wybór eksperymentów PWN, Warszawa . 2004
2 Bochwic B. Preparatyka organiczna PWN, Warszawa . 1975
3 Vogel A., Preparatyka organiczna WNT, Warszawa . 1984
4 Wróbel J. i inni Preparatyka i elementy syntezy organicznej PWN, Warszawa . 1983
5 Moore J.A., Dalrymple D.L. Ćwiczenia z chemii organicznej PWN, Warszawa . 1976
6 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN, Warszawa . 1988
7 Willis Ch., Wills M. Synteza organiczna Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków. 1995
8 Mastalerz P. Chemia organiczna PWN, Warszawa . 1984
9 Morrison R., Boyd R. Chemia organiczna, t. I i II PWN, Warszawa . 1985
10 McMurry J. Chemia organiczna, t. I i II PWN, Warszawa . 2000
Bibliography to self-study
1 Patrick G. Chemia organiczna PWN, Warszawa . 2002
2 Morris D. Stereochemia PWN, Warszawa . 2008
3 Siemion Z Biostereochemia PWN, Warszawa. 1985
4 Potapow W.M. Stereochemia PWN, Warszawa . 1986
5 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN Warszawa . 1988
6 Gawroński J., Gawrońska K., Kacprzak K., Kwit M. Współczesna synteza organiczna. Wybór eksperymentów PWN, Warszawa . 2004
7 Willis Ch., Wills M. Synteza organiczna Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków . 1995
8 Mastalerz P. Chemia organiczna PWN, Warszawa . 1984
9 Morrison R., Boyd R. Chemia organiczna, t. I i II PWN, Warszawa . 1985
10 McMurry J. Chemia organiczna, t. I i II PWN, Warszawa . 2000

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for semester I

Basic requirements in category knowledge: Knowledge of the nomenclature, structure, physical and chemical properties of the basic classes of organic compounds and knowlegde of spectral techniques.

Basic requirements in category skills: Ability to name and to predict a chemical properties of organic compounds and ability to work in a laboratory.

Basic requirements in category social competences: Ability to work in a team in the synthesis, isolation of simple organic compounds.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 have knowledge of the determination of the configuration of the stereoisomers lecture, laboratory written test, written report K_W01+++
P7S_WG
02 has a basic knowledge of investigation of the structure of stereoisomers lecture, laboratory written test, written report K_W01++
P7S_WG
03 can analyze the stereochemical course of simple organic reactions lecture, laboratory written test, written report K_U15+
P7S_UW
04 can carry out simple synthesis with participation of stereoisomers and separate optically active compounds laboratory written test, performance monitoring, written report K_U08+
P7S_UO
P7S_UW
05 can individually expand their knowledge in the stereochemically transformations laboratory written test, performance monitoring K_K01+
P7S_KK

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
1 TK01 Stereoisomerism, kinds of stereoisomers. Configuration and conformation. Determination of relative and absolute configuration, chirality and pro-chirality. Stereochemical course of the reaction in the Newman and Fischer projection. Methods of investigation of the structure of stereoisomers and stereochemically transformations: experimental methods for determining the configuration of geometric and optical isomers, conformational analysis, kinetics of configurational and conformational changes, the use of chemical and instrumental methods for stereochemical studies. Stereochemistry of amino acids and peptides, carbohydrates, lipids, steroids and terpenoids. Stereochemistry of enzymatic transformations. W01 - W015 MEK01 MEK02 MEK03 MEK05
1 TK02 Synthesis with participation of stereoisomers. L01 - L04 MEK04

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 1) contact hours: 15.00 hours/sem.
Studying the recommended bibliography: 5.00 hours/sem.
Others: 12.00 hours/sem.
Laboratory (sem. 1) The preparation for a Laboratory: 6.00 hours/sem.
The preparation for a test: 12.00 hours/sem.
contact hours: 15.00 hours/sem.
Finishing/Making the report: 2.00 hours/sem.
Advice (sem. 1) The participation in Advice: 10.00 hours/sem.
Credit (sem. 1)

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture The final grade depends on the basis of 6 - 7 tests where one can Get the max of 50 points. The final grade depends on the amount of points: 3.0 52.0%-62.0% ; 3.5 62.1%-72.0%; 4.0 72.1%-82.0%; 4.5 82.1%-92.0%; 5.0 92.1%-100%
Laboratory Each laboratory exercise must be positively included. The final grade of the exercise is a weighted average; the weight of a written test is twice greater than a weight of a grade for experiment and report. The final grade of the laboratory is an arithmetic average from all exercise included in the curriculum.
The final grade Final grade (K): K = 0,4 w L + 0,6 w Z; where: L, Z - positive evaluation of the lab and lecture; w - factor related to the time of credit, w= 1.0 first term, w = 0.9 second term , w = 0.8 third term. The grade is rounded according to WKZJK.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 B. Dębska; J. Lubczak; A. Strzałka Polyols and polyurethane foams based on chitosans of various molecular weights 2024
2 E. Chmiel-Bator; J. Lubczak; R. Lubczak; M. Szpiłyk Sposób otrzymywania poliolu 2024
3 E. Chmiel-Szukiewicz; A. Szałek; M. Szukiewicz Graph Theory in Chemical Kinetics Practice Problems 2024
4 E. Chmiel-Szukiewicz; M. Szukiewicz Generalized Linear Driving Force Formulas for Diffusion and Reaction in Porous Catalysts 2024
5 E. Chmiel-Szukiewicz; M. Szukiewicz; L. Zaręba Application of the kinetic polynomial idea to describecatalytic hydrogenation of propene 2024
6 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli z wykorzystaniem chitozanu 2024
7 J. Lubczak; A. Strzałka Polyols and Polyurethane Foams Based on Water-Soluble Chitosan 2023
8 J. Lubczak; A. Strzałka Polyurethane foams with hydroxylated chitosan units 2023
9 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli 2023
10 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli z wykorzystaniem chitozanu 2023
11 J. Lubczak; R. Lubczak Oligoetherols and polyurethane foams based on cyclotriphosphazene of reduced fammability 2023
12 J. Lubczak; R. Lubczak; A. Strzałka Chitosan Oligomer as a Raw Material for Obtaining Polyurethane Foams 2023
13 J. Lubczak; R. Lubczak; A. Strzałka Polyols obtained from chitosan 2023
14 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania mieszaniny polioli 2023
15 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania wielofunkcyjnych polieteroli 2023
16 E. Chmiel-Bator; J. Lubczak; R. Lubczak; M. Szpiłyk Polyols and Polyurethane Foams Obtained from Mixture of Metasilicic Acid and Cellulose 2022
17 J. Lubczak; M. Walczak e-caprolactone and pentaerythritol derived oligomer for rigid polyurethane foams preparation 2022
18 J. Lubczak; R. Lubczak Increased Thermal Stability and Reduced Flammability of Polyurethane Foams with an Application of Polyetherols 2022
19 D. Broda; B. Dębska; M. Kus-Liśkiewicz; J. Lubczak; R. Lubczak; D. Szczęch; R. Wojnarowska-Nowak Polyetherols and polyurethane foams from starch 2021
20 E. Bobko; D. Broda; B. Dębska; M. Kus-Liśkiewicz; J. Lubczak; R. Lubczak; D. Szczęch; M. Szpiłyk Flame retardant polyurethane foams with starch unit 2021
21 E. Chmiel-Szukiewicz Hardly Flammable Polyurethane Foams with 1,3-Pyrimidine Ring and Boron Atoms 2021
22 E. Chmiel-Szukiewicz; A. Szałek; M. Szukiewicz Kinetic investigations of heterogeneous reactor processes – Optimization of experiments 2021
23 J. Lubczak; R. Lubczak; D. Szczęch Sposób otrzymywania mieszaniny wielofunkcyjnych polieteroli 2021
24 J. Lubczak; R. Lubczak; M. Szpiłyk Polyetherols and polyurethane foams with cellulose subunits 2021
25 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania wielofunkcyjnych polieteroli 2021
26 J. Lubczak; R. Lubczak; M. Szpiłyk The biodegradable cellulose-derived polyol and polyurethane foam 2021
27 J. Lubczak; R. Lubczak; M. Szpiłyk; M. Walczak Polyol and polyurethane foam from cellulose hydrolysate 2021
28 M. Borowicz; E. Chmiel; J. Lubczak; J. Paciorek-Sadowska Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation 2021
29 E. Chmiel; J. Lubczak Polyurethane foams with 1,3,5-triazine ring, boron and silicon 2020
30 J. Lubczak; M. Szpiłyk Sposób wytwarzania oligoeterolu z pierścieniem azafosfacyklicznym 2020
31 J. Lubczak; R. Lubczak; D. Szczęch From starch to oligoetherols and polyurethane foams 2020
32 B. Dębska; J. Duliban; K. Hęclik; J. Lubczak Analysis of the Possibility and Conditions of Application of Methylene Blue to Determine the Activity of Radicals in Model System with Preaccelerated Cross-Linking of Polyester Resins 2019
33 E. Chmiel-Szukiewicz Improved thermally stable oligoetherols from 6-aminouracil, ethylene carbonate and boric acid 2019
34 E. Chmiel-Szukiewicz; K. Kaczmarski; A. Szałek; M. Szukiewicz Dead zone for hydrogenation of propylene reaction carried out on commercial catalyst pellets 2019
35 E. Chmiel; J. Lubczak Polyurethane foams with 1,3,5-triazine ring and silicon atoms 2019
36 E. Chmiel; J. Lubczak Sposób otrzymywania termoodpornych i niepalnych pianek poliuretanowych 2019
37 E. Chmiel; J. Lubczak Synthesis of oligoetherols from mixtures of melamine and boric acid and polyurethane foams formed from these oligoetherols 2019
38 E. Chmiel; J. Lubczak; R. Oliwa Boron-containing non-flammable polyurethane foams 2019
39 J. Lubczak; R. Lubczak; D. Szczęch Sposób otrzymywania mieszaniny wielofunkcyjnych polieteroli 2019
40 J. Lubczak; R. Lubczak; I. Zarzyka Sposób otrzymywania polieteroli z pierścieniami azacyklicznymi 2019
41 M. Borowicz; B. Czupryński; J. Lubczak; J. Paciorek-Sadowska Biodegradable, Flame-retardant, and Bio-Based rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application 2019