logo
Item card
logo

Biocompatible materials

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Biotechnology

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: full time

discipline specialities : Laboratory diagnostics in biotechnology, Pharmaceutical biotechnology, Process and bioprocess engineering, Purification and analysis of biotechnological products

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Organic Chemistry

The code of the module: 1398

The module status: mandatory for teaching programme Process and bioprocess engineering, Purification and analysis of biotechnological products

The position in the studies teaching programme: sem: 1 / W10 L30 / 3 ECTS / Z

The language of the lecture: Polish

The name of the coordinator: Prof. Iwona Zarzyka, DSc, PhD, Eng.

The aim of studying and bibliography

The main aim of study: The aim of the education is to provide knowledge on the classification of biocompatible materials and the main directions of their applications. Understanding the importance of biocompatible materials in the development of modern medicine, perspectives and role in improving the quality of life, with particular emphasis on polymeric biocompatible materials.

The general information about the module: The module is realized in first semester of the studiess of second degree. It is realized during 10 hours of lectures and 30 hours of laboratory and ends by the credit.

Teaching materials: Opracowania do cwiczen laboratoryjnych (6x)

Bibliography required to complete the module
Bibliography used during lectures
1 Rabek J. Współczesna wiedza o polimerach PWN. 2008
2 Marciniak J. Biomateriały Wydawnictwo Politechniki Sląskiej. 2002
3 Rabek J. Współczesna wiedza o polimerach, polimery naturalne i syntetyczne, otrzymywanie i zastosowanie, t.2 PWN. 2017
4 Świeczko-Żurek B. Biomateriały Wydawnictwo Politechniki Gdańskiej. 2009
5 Burczyk A., Bogdał D., Pielichowski J. Polifosfazeny: synteza, właściwości, nowe kierunki zastosowania Przemysł Chemiczny, 48(10), 1370-1375. 2003
6 Achremowicz B., Korus J. Właściwości, produkcja i zastosowanie cyklodekstryn Żywność. Technologia. Jakość, 3(8), 14-27. 1996
7 Cieślak-Golonka, M., Starosta, J., Wasielewski, M. Wstęp do chemii koordynacyjnej PWN. 2013
8 Dodziuk H. Wstęp do chemii supramolekularnej WUW. 2008
9 Sznitowska M. Farmacja stosowana technologia postaci leku PZWL. 2017
10 Kołodziejczyk A. Naturalne związki organiczne PWN. 2013
11 Oleszko-Torbus N., Utrata-Wesołek A, Wałach W., Dworak A., Trzebicka B. Nowe termowrażliwe powierzchnie polimerowe do hodowli i uwalniania komórek skóry Wiadomości chemiczne, 70(11-12), 803-818. 2016
12 Utrata-Wesołek A., Trzebicka B., Dworak A. Polimery wrażliwe na bodźce Polimery, 53(10), 717-724. 2008
13 Ukielski R., Sobiecki P. Inteligentne polimery z termicznym efektem pamięci Polimery, 53(11-12), 793-804. 2008
14 Pielichowski J., Pruszyński A. Chemia polimerów wyd. Teza, Kraków. 2004
15 Olaru N. , Olaru L., Vasile C., Ander P. Surface modified cellulose obtained by acetylation without solvents of bleached and unbleached kraft pulps Polimery, 56(11-12), 834-840. 2011
16 Qiu X., Hu S. ”Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications Materials, 6, 738-781. 2013
Bibliography used during classes/laboratories/others
1 J. Gawroński, K. Gawrońska, K. Kacprzak, M. Kwit Współczesna synteza organiczna, wybór eksperymentów PWN. 2012
2 J.F. Rabek Współczesna wiedza o polimerach Wydawnictwo PWN. 2008
3 D. Stewart, C. D. Gutsche Isolation, Characterization, and Conformational Characteristics of p-tert-Butylcalix[9−20]arenes J. Am. Chem. Soc., 121(17), 4136–4146. 1999
4 A. Vogel Preparatyka organiczna WNT. 2006
5 P. Kowalski Laboratorium chemii organicznej WNT. 2004
6 Z. Wang, I. Cedillo, D. L. Cole, Y. S. Sanghvi, M. Hinz, W. Prukała, M. Sobkowski, H. Seliger, M. Rimmler, R. Ditz, J. Hoffmeyer A New PVA Support for Oligonucleotide Synthesis at Large Scale. Innovation and Perspectives in Solid Phase Synthesis & Combinatorial Libraries Mayflower Worldwide Ltd, Birmigham, 118-122. 2004
7 Z. Florjańczyk, S. Penczek Chemia polimerów, t.1, Makrocząsteczki i metody icotrzymywania OWPW. 2001
8 Z. Florjańczyk, S. Penczek Chemia polimerów, t.2, Podstawowe polimery syntetyczne i ich zastosowanie OWPW. 2001

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for the first semester.

Basic requirements in category knowledge: Basic knowledge of inorganic, organic and polymer chemistry.

Basic requirements in category skills: The ability of the selfstudy. Ability to present structural formulas and write organic reactions.

Basic requirements in category social competences: The ability both the independent work as and the team.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Student has the basic knowledge on the subject of biocompatible materials used in medicine and pharmacy. lecture, laboratory credit of written part, written report. K_W08++
P7S_WG
02 Student knows classification and the use of biocompatible materials and the methods of their analysis. lecture, laboratory written test, written report K_W05++
K_W07++
P7S_WG
03 Student can work in a team in the synthesis of polymeric materials. laboratory credit of practical part, credit of written part K_U08+++
K_U11+++
P7S_UO
P7S_UW
04 Student understands of additional education for professional improve, in particuliarity for application of in biocompatible material, in medicine, pharmacy and stomatology. lecture written test K_K01+++
P7S_KK

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
1 TK01 The introduction: the Classification of biocompatible materials. Division, chemical and supermolecule structures. The review important biocompatible, polymeric, ceramic, and metallic materials. W01 MEK01
1 TK02 Natural biocompatible polymer materials - cellulose, chitosan, cyclodextrins, hyaluronic acid W02 MEK01
1 TK03 Synthetic biocompatible oligo- and polymers - calixarenes, vinyl polymers W03 MEK02
1 TK04 Inorganic-organic polymers - polyphosphazenes, polysiloxanes W04 MEK02
1 TK05 Smart polymers Amphiphilic polymers W05 MEK02 MEK04
1 TK06 Preparation of macrocyclic compounds - p-tert-butylkalix[6]arene L01, L02, L03 MEK03
1 TK07 Vinyl acetate polymerization (VAC) to polyvinyl acetate (PVAC) L04 MEK03
1 TK08 Hydrolysis of polyvinyl acetate PVAC to polyvinyl alcohol (PVA) L05 MEK03 MEK04
1 TK09 Crosslinking of poly (vinyl alcohol) PVA with the use of boron compounds L06 MEK03

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 1) contact hours: 10.00 hours/sem.
complementing/reading through notes: 2.00 hours/sem.
Studying the recommended bibliography: 4.00 hours/sem.
Laboratory (sem. 1) The preparation for a Laboratory: 4.00 hours/sem.
The preparation for a test: 4.00 hours/sem.
contact hours: 30.00 hours/sem.
Finishing/Making the report: 8.00 hours/sem.
Advice (sem. 1) The preparation for Advice: 2.00 hours/sem.
The participation in Advice: 2.00 hours/sem.
Credit (sem. 1) The preparation for a Credit: 8.00 hours/sem.
The written credit: 1.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture The final score is exposed in the adequate way to the number of points got on the colloquium: very good from 92.1% to 100% good plus from 82.1% to 92.0% good from 72.1% to 82.0% sufficient plusfrom 72.1% to 82.0% sufficient from 52.1% to 62.0% insufficient less than 52.00.
Laboratory The arithmetic mean of the grades obtained from individual exercises on the basis of a short test of preparation for the exercise, conducting of the exercise and a written report. ery good from 4.71 good plus from 4.26 to 4.70 good from 3.76 to 4.25 sufficient plus from 3.31 to 3.75 sufficient from 2.76 to 3 30 insufficient less than 2.76.
The final grade 50% score from the colloquium (E) + 50% final score from laboratories(L): Final Assessment (K): K = 0.5wL + 0.5W (where w = 1, the first term; w = 0.9 second term, w = 0.8 third term) very good from 4.71 good plus from 4.26 to 4.70 good from 3.76 to 4.25 sufficient plus from 3.31 to 3.75 sufficient from 2.76 to 3 30 insufficient less than 2.76.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; I. Zarzyka Kompozyt polimerowy oraz sposób wytwarzania kompozytu polimerowego 2024
2 M. Bakar; A. Białkowska; B. Hanulikova; W. Kucharczyk; M. Masař; I. Zarzyka Polylactide-Based Nonisocyanate Polyurethanes: Preparation, Properties Evaluation and Structure Analysis 2024
3 A. Czerniecka-Kubicka; A. Szyszkowska; I. Zarzyka Hybrydowy nanokompozyt polimerowy i sposób jego otrzymywania 2023
4 A. Czerniecka-Kubicka; B. Krzykowska; I. Zarzyka Bionanocomposites based on the poly(3-hydroxybutyrate) matrix modified with aliphatic polyurethanes and nanoclay 2023
5 A. Czerniecka-Kubicka; G. Neilsen; M. Pyda; M. Skotnicki; P. Tutka; B. Woodfield; I. Zarzyka Heat capacity of cytisine – the drug for smoking cessation 2023
6 A. Czerniecka-Kubicka; M. Pyda; M. Skotnicki; I. Zarzyka Liquid heat capacity of amorphous poly(vinyl methyl ether) 2023
7 A. Czerniecka-Kubicka; W. Gonciarz; B. Jadach; M. Kovářová; L. Lovecká; K. Maternia-Dudzik; M. Pyda; V. Sedlařík; M. Skotnicki; P. Tutka; I. Zarzyka The cytisine-enriched poly(3-hydroxybutyrate) fibers for sustained-release dosage form 2023
8 A. Szyszkowska; I. Zarzyka Sposób wytwarzania estru 2023
9 L. Dobrowolski; K. Hęclik; M. Jaromin; I. Zarzyka A Practical Test of Distance Learning During the COVID-19 Lockdown 2023
10 M. Bakar; A. Białkowska; A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; B. Krzykowska; M. Longosz; I. Zarzyka Polymer Biocompositions and Nanobiocomposites Based on P3HB with Polyurethane and Montmorillonite 2023
11 M. Bakar; A. Białkowska; A. Czerniecka-Kubicka; M. Kovářová; B. Krzykowska; V. Sedlařík; I. Zarzyka Polymer/Layered Clay/Polyurethane Nanocomposites: P3HB Hybrid Nanobiocomposites—Preparation and Properties Evaluation 2023
12 M. Bakar; A. Białkowska; W. Kucharczyk; I. Zarzyka Hybrid Epoxy Nanocomposites: Improvement in Mechanical Properties and Toughening Mechanisms—A Review 2023
13 M. Chmiela; A. Czerniecka-Kubicka; L. Dobrowolski; W. Gonciarz; K. Hęclik; M. Longosz; A. Szyszkowska; D. Trzybiński; K. Woźniak; A. Wróbel; I. Zarzyka Molecular Modeling of 3-chloro-3-phenylquinoline-2,4-dione, Crystal Structure and Cytotoxic Activity for developments in a potential new drug 2023
14 M. Bakar; A. Białkowska; A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; B. Krzykowska; I. Zarzyka Biobased poly(3-hydroxybutyrate acid) composites with addition of aliphatic polyurethane based on polypropylene glycols 2022
15 A. Czerniecka-Kubicka; M. Pyda; I. Zarzyka Sposób pomiaru ciepła właściwego alifatycznego poliuretanu liniowego, zwłaszcza 4,6-PU 2021
16 K. Hęclik; K. Hęclik; I. Zarzyka Metal-Humus Acid Nanoparticles - Synthesis, Characterization and Molecular Modeling 2021
17 M. Bakar; A. Białkowska; A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; K. Leś; M. Pyda; M. Walczak; I. Zarzyka Thermally stable biopolymer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes – preparation and properties 2021
18 W. Frącz; T. Pacześniak; I. Zarzyka Rigid polyurethane foams modified with borate and oxamide groups-Preparation and properties 2021
19 A. Białkowska; L. Dobrowolski; L. Wianowski; I. Zarzyka Physical blowing agents for polyurethanes 2020
20 A. Czerniecka-Kubicka; L. Dobrowolski; K. Hęclik; I. Zarzyka Biodegradowalne kompozyty polimerowe na osnowie P3HB 2020
21 A. Czerniecka-Kubicka; M. Dickson; D. Hojan-Jezierska; M. Janus-Kubiak; L. Kubisz; G. Neilsen; M. Pyda; M. Skotnicki; B. Woodfield; I. Zarzyka; W. Zielecki Vibrational heat capacity of silver carp collagen 2020
22 A. Czerniecka-Kubicka; M. Pyda; I. Zarzyka Long-Term Physical Aging Tracked by Advanced Thermal Analysis of Poly(N-Isopropylacrylamide): A Smart Polymer for Drug Delivery System 2020
23 A. Szyszkowska; I. Zarzyka Sposób wytwarzania 1-fenylo-2-(2-hydroksyetylo)-6H-imidazo[1,5-c]chinazolino-3,5-dionu i 1-fenylo-2-(2-hydroksypropylo)-6H-imidazo[1,5-c]chinazolino-3,5-dionu 2020
24 M. Bakar; A. Białkowska; B. Hanulikova; M. Masař; I. Zarzyka Effect of structure of nonisocyanate condensation polyurethanes based on benzoic acid on its susceptibility to biodegradation 2020
25 R. Bartosik; L. Dobrowolski; K. Hęclik; A. Klasek; A. Lycka; I. Zarzyka New mono- and diesters with imidazoquinolinone ring- synthesis, structure characterization and molecular modeling 2020
26 Ł. Byczyński; A. Czerniecka-Kubicka; W. Frącz; M. Pyda; V. Sedlarik; A. Szyszkowska; I. Zarzyka Hybrid nanobiocomposites based on poly(3-hydroxybutyrate) – characterization, thermal and mechanical properties 2020
27 A. Czerniecka-Kubicka; A. Szyszkowska; I. Zarzyka Hybrydowy nanokompozyt polimerowy i sposób jego otrzymywania 2019
28 A. Szyszkowska; I. Zarzyka Sposób otrzymywania 1,3-bis(2-hydroksyetylo)-4-fenylo-5-[2(2-oksoksazol-3-ylo)fenylo]imidazol-2-onu 2019
29 J. Lubczak; R. Lubczak; I. Zarzyka Sposób otrzymywania polieteroli z pierścieniami azacyklicznymi 2019
30 K. Hęclik; A. Klasek; S. Pawlędzio; A. Szyszkowska; D. Trzybiński; K. Woźniak; I. Zarzyka Unprecedented reaction course of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione with an excess of ethylene oxide 2019
31 K. Hęclik; A. Szyszkowska; I. Zarzyka Spatial packing of diols and esters with imidazoquinazoline ring - quantum-mechanical modelling 2019
32 Ł. Byczyński; A. Czerniecka-Kubicka; K. Gancarczyk; M. Pyda; V. Sedlarik; A. Szyszkowska; I. Zarzyka Linear polyurethanes with imidazoquinazoline rings: preparation and properties evaluation 2019