logo
Item card
logo

Methods of polymer analysis

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical Technology

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: full time

discipline specialities : Technology of medicinal products, Chemical analysis in industry and environment , Organic and polymer technology, Polymer materials engineering, Product and ecological process engineering

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Technology and Materials Chemistry

The code of the module: 1363

The module status: mandatory for the speciality Chemical analysis in industry and environment

The position in the studies teaching programme: sem: 2 / W15 L30 / 3 ECTS / Z

The language of the lecture: Polish

The name of the coordinator: Beata Mossety-Leszczak, DSc, PhD, Eng.

office hours of the coordinator: Wtorek: 9.30-11.00 Czwartek: 11.30-13.00

semester 2: Maciej Kisiel, PhD, Eng. , office hours Wednesday – 12.30 – 14.00 Thursday – 14.00 – 15.30

semester 2: Łukasz Byczyński, DSc, PhD, Eng. , office hours Tuesday: 8:00-10:00 (H-74) or with the use of the Microsoft Teams application after notification by e-mail Friday: 9:00 - 10:00 (H-74) or with the use of the Microsoft Teams application after notifica

The aim of studying and bibliography

The main aim of study: Acquiring knowledge on the methods of polymer analysis.

The general information about the module: The module takes place in the second semester, includes 15 hours of lecture and 30 hours laboratory. The module ends with a final test.

Teaching materials: Instrukcje do ćwiczeń laboratoryjnych

others: Normy przedmiotowe

Bibliography required to complete the module
Bibliography used during lectures
1 Przygocki W. Metody fizyczne badań polimerów WNT Warszawa. 1990
2 Przygocki W., Włochowicz A. Fizyka polimerów PWN Warszawa. 2001
3 Hunt B.J., James M.J. Polymer characterisation Blackie London. 1993
4 Galina H. Fizykochemia polimerów Wydawnictwo Politechniki Rzeszowskiej, Rzeszów. 1998
5 Rabek J.F. Współczesna wiedza o polimerach PWN Warszawa. 2008
6 Broniewski T., Kapko J., Płaczek W., Thomalla J. Metody badań i ocena właściwości tworzyw sztucznych WNT Warszawa. 2000
7 Schultze D. Termiczna analiza różnicowa PWN Warszawa. 1974
8 Kasprzycka-Gutman T. Elementy kalorymetrii statycznej i dynamicznej WNT Warszawa . 1993
Bibliography used during classes/laboratories/others
1 Przygocki W. Metody fizyczne badań polimerów WNT Warszawa. 1990
2 Praca zbiorowa Analiza polimerów syntetycznych WNT Warszawa . 1971
3 Szlezyngier W. Tworzywa Sztuczne Oficyna Wydawnicza PRz Rzeszów. 1996
4 Korszak W. Technologia tworzyw sztucznych WNT Warszawa . 1981
5 Broniewski T., Kapko J., Płaczek W., Thomalla J. Metody badań i ocena właściwości tworzyw sztucznych WNT Warszawa . 2000
6 Schultze D. Termiczna analiza różnicowa PWN Warszawa. 1974
7 Kasprzycka-Gutman T. Elementy kalorymetrii statycznej i dynamicznej WNT Warszawa . 1993
8 Żenkiewicz M. Adhezja modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych WNT Warszawa . 2000
9 Obłój-Muzaj M., Świerz-Motysia B, Szabłowska B. Polichlorek winylu WNT Warszawa . 2007
Bibliography to self-study
1 Artykuły w czasopismach polimerowych (np. POLIMERY), dostępnych w czytelni PRz .

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for the second semester.

Basic requirements in category knowledge: Has knowledge on polymer chemistry and technology, instrumental analysis and chemical analysis.

Basic requirements in category skills: Has a laboratory skill in instrumental analysis and polymer technology and skill at performing calculations and interpretation of results.

Basic requirements in category social competences: Knows safety and fire protection regulation in chemical laboratory. Capable of working in team and individually.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Knows advanced testing methods of structure and properties of polymeric materials both in a condensed state and in solution. lecture, laboratory exercises written test, written report, skill assessment K_W08+++
P7S_WG
02 Has skill in presentation of the results related to analysis of the properties of polymeric materials and can prepare a report. laboratory exercises written test, written report, skill assessment K_U06++
P7S_UK
P7S_UW
03 Can propose, evaluate the usefulness and apply appropriate analytical methods to the study of polymeric materials. laboratory exercises written test, written report, skill assessment K_U14+++
P7S_UW
04 Understands the need for complement the knowledge of the new and updated methods for the analysis of polymeric materials. lecture, laboratory exercises written test, written report, skill assessment K_K01++
P7S_KK

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
2 TK01 Introduction. Types of average polymer molecular weight. W01 MEK01
2 TK02 The study of polymer solutions: determination of the molecular weight: viscometry, osmometry, ebullioscopy and cryoscopy, sedimentation methods, gel permeation chromatography GPC, etc. W02 MEK01 MEK03 MEK04
2 TK03 Instrumental methods of chemical analysis, including high-speed NMR, FT-IR, Raman spectroscopy, and other special spectroscopic methods. W03 MEK01 MEK03 MEK04
2 TK04 Chromatographic methods. Types of chromatography and types of obtained information. W04 MEK01 MEK03 MEK04
2 TK05 Testing methods using electromagnetic radiation: static (Rayleigh) light scattering, dynamic (quasi-elastic) light scattering, small angle light scattering, X-ray methods (SAXS, WAXS), neutron scattering. W05 MEK01 MEK03 MEK04
2 TK06 Testing methods of polymers in condensed state: optical and electron microscopy, atomic force microscopy, electron diffraction. W06 MEK01 MEK03 MEK04
2 TK07 Methods of thermal analysis (DSC, TGA, DMA, etc.). W07 MEK01 MEK03 MEK04
2 TK08 6 exercises to choose from: Characterization of amorphous polymers (determination of glass transition temperature) and crystalline polymers (determination of melting point of the crystalline phase and the degree of crystallinity) by DSC. The analysis of the reactivity of the epoxy resins by differential scanning calorimetry (DSC). Determination of the particle size by dynamic light scattering. Investigation of dispersion stability – zeta potential. Investigation of physical and chemical properties of polymers by gel permeation chromatography – molecular mass and distribution of molecular mass. Determination of limiting oxygen index for polymers. Determination of resin and fillers content in the phenol - formaldehyde compounds by extraction and thermal analysis. L01_L06 MEK01 MEK02 MEK03

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 2) contact hours: 15.00 hours/sem.
complementing/reading through notes: 5.00 hours/sem.
Laboratory (sem. 2) The preparation for a Laboratory: 5.00 hours/sem.
The preparation for a test: 5.00 hours/sem.
contact hours: 30.00 hours/sem.
Finishing/Making the report: 7.50 hours/sem.
Advice (sem. 2) The participation in Advice: 2.00 hours/sem.
Credit (sem. 2) The preparation for a Credit: 8.00 hours/sem.
The written credit: 1.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture Mark of the written test from the lectures – W1. The test mark depends on the score gained: 50,1-60%: 3.0 60,1-70%: 3.5 70,1-80%: 4.0 80,1-90%: 4.5 90,1-100%: 5.0
Laboratory Student must perform all of the planed experiments, prepare and pass written reports, pass tests from theoretical information connected with laboratory lessons.Average mark from test, written report from each exercise, taking into account the observations of performance of each exercise – W2
The final grade Final mark: W = w 0,5 W1 + w 0,5 W2; w - weighting factor: w = 1,0 first term, w = 0,9 second term, w = 0,8 third term.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 J. Bieniaś; Ł. Byczyński; D. Czachor-Jadacka; M. Droździel-Jurkiewic; M. Kisiel; B. Mossety-Leszczak; G. Pietruszewska; M. Włodarska; W. Zając Nonterminal liquid crystalline epoxy resins as structurally ordered low Tg thermosets with potential as smart polymers 2024
2 K. Awsiuk; N. Janiszewska; B. Mossety-Leszczak; J. Raczkowska; A. Strachota; B. Strachota; M. Walczak; A. Zioło Synthesis and Morphology Characteristics of New Highly Branched Polycaprolactone PCL 2024
3 M. Kisiel; B. Mossety-Leszczak The Effect of Nonterminal Liquid Crystalline Epoxy Resin Structure and Curing Agents on the Glass Transition of Polymer Networks 2024
4 M. Kisiel; B. Mossety-Leszczak; L. Okrasa; M. Włodarska Modification of the Dielectric and Thermal Properties of Organic Frameworks Based on Nonterminal Epoxy Liquid Crystal with Silicon Dioxide and Titanium Dioxide 2024
5 M. Kisiel; B. Mossety-Leszczak; W. Zając Advancements in The Cross-Linking and Morphology of Liquid Crystals 2024
6 Ł. Byczyński; D. Czachor-Jadacka; M. Kisiel; B. Mossety-Leszczak; B. Pilch-Pitera; K. Pojnar; M. Walczak; J. Wojturska Poliuretanowy lakier proszkowy oraz sposób wytwarzania poliuretanowego lakieru proszkowego 2024
7 Ł. Byczyński; E. Ciszkowicz; D. Czachor-Jadacka; M. Kisiel; B. Mossety-Leszczak; B. Pilch-Pitera; M. Walczak; J. Wojturska Wodna dyspersja kationomerów uretanowo-akrylowych, sposób wytwarzania wodnej dyspersji kationomerów uretanowo-akrylowych oraz sposób wytwarzania fotoutwardzalnej powłoki z wykorzystaniem tej wodnej dyspersji 2024
8 M. Kisiel; B. Mossety-Leszczak; L. Okrasa; M. Włodarska; W. Zając Changes in molecular relaxations and network properties of a triaromatic liquid crystal epoxy resin with nonterminal functional groups 2023
9 J. Karaś; M. Kisiel; B. Mossety-Leszczak; B. Pilch-Pitera; M. Włodarska; W. Zając The application of liquid crystalline epoxy resin for forming hybrid powder coatings 2022
10 K. Byś; J. Hodan; B. Mossety-Leszczak; E. Pavlova; A. Strachota; B. Strachota Self-Healing and Super-Elastomeric PolyMEA-co-SMA Nanocomposites Crosslinked by Clay Platelets 2022
11 M. Kisiel; B. Mossety-Leszczak Liquid Crystalline Polymers 2022
12 B. Mossety-Leszczak; M. Włodarska DFT Studies of Selected Epoxies with Mesogenic Units–Impact of Molecular Structure on Electro-Optical Response 2021
13 K. Byś; B. Mossety-Leszczak; E. Pavlova; M. Steinhart; A. Strachota; B. Strachota; W. Zając Novel Tough and Transparent Ultra-Extensible Nanocomposite Elastomers Based on Poly(2-methoxyethylacrylate) and Their Switching between Plasto-Elasticity and Viscoelasticity 2021
14 M. Kisiel; B. Mossety-Leszczak; A. Strachota; B. Strachota Achieving structural anisotropy of liquid crystalline epoxy by manipulation with crosslinking parameters 2021
15 M. Kisiel; B. Mossety-Leszczak Development in liquid crystalline epoxy resins and composites – A review 2020
16 M. Marchel; B. Mossety-Leszczak; M. Walczak Maize (Zea mays) reaction in response to rubber rag additive into the soil 2020
17 S. Horodecka; D. Kaňková; B. Mossety-Leszczak; M. Netopilík; M. Šlouf; A. Strachota; B. Strachota; M. Vyroubalová; Z. Walterová; A. Zhigunov Low-Temperature Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinkers: A Passive Smart Material with Potential as Viscoelastic Coupling. Part I: Synthesis and Phase Behavior 2020
18 S. Horodecka; D. Kaňková; B. Mossety-Leszczak; M. Netopilík; M. Šlouf; A. Strachota; M. Vyroubalová; A. Zhigunov Meltable copolymeric elastomers based on polydimethylsiloxane with multiplets of pendant liquid-crystalline groups as physical crosslinker: A self-healing structural material with a potential for smart applications. 2020
19 S. Horodecka; M. Kisiel; B. Mossety-Leszczak; M. Šlouf; A. Strachota; B. Strachota Low-Temperature-Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinker: A Passive Smart Material with Potential as Viscoelastic Coupling. Part II—Viscoelastic and Rheological Properties 2020
20 A. Frańczak; M. Kisiel; B. Mossety-Leszczak; D. Szczęch Quantitative analysis of the polymeric blends 2019
21 N. Buszta; M. Kisiel; J. Lechowicz; B. Mossety-Leszczak; R. Ostatek; M. Włodarska Analysis of curing reaction of liquid-crystalline epoxy compositions by using temperature-modulated DSC TOPEM (R) 2019