logo
Item card
logo

Methods of following the course of organic reactions

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical Technology

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: full time

discipline specialities : Technology of medicinal products, Chemical analysis in industry and environment , Organic and polymer technology, Polymer materials engineering, Product and ecological process engineering

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Organic Chemistry

The code of the module: 1356

The module status: mandatory for the speciality Organic and polymer technology

The position in the studies teaching programme: sem: 2 / W30 C30 L30 / 7 ECTS / E

The language of the lecture: Polish

The name of the coordinator: Prof. Jacek Lubczak, DSc, PhD, Eng.

office hours of the coordinator: W terminach podanych w harmonogramie pracy jednostki.

semester 2: Renata Lubczak, DSc, PhD, Eng. , office hours as in the work schedule of Department of Organic Chemistry

The aim of studying and bibliography

The main aim of study: The student should obtain knowledge of the methods of analysis of the course of the organic reactions including stereochemical aspects.

The general information about the module: The module is implemented in the second semester. There are 30 hours of lectures, 30 hours of classes and 30 hours laboratory. Module ends with an exam.

Bibliography required to complete the module
Bibliography used during lectures
1 Jones R. Fizyczna chemia organiczna. Mechanizmy reakcji organicznych PWN, Warszawa . 1988
2 Schwetlick K. Kinetyczne metody badania mechanizmów reakcji PWN, Warszawa . 1975
3 Sykes P. Badanie mechanizmów reakcji organicznych PWN, Warszawa . 1976
4 Praca zbiorowa Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych WNT, Warszawa. 1995
5 Jackson R. Mechanizmy reakcji związków organicznych PWN, Warszawa . 2007
6 Günther H. Spektroskopia magnetycznego rezonansu jądrowego PWN, Warszawa . 1983
7 Paszyc S. Podstawy fotochemii PWN, Warszawa . 1992
8 Praca zbiorowa Zastosowanie nuklidów promieniotwórczych w chemii PWN, Warszawa . 1989
9 Morris D. Stereochemia PWN, Warszawa . 2008
10 Whittaker D. Stereochemia a mechanizm reakcji PWN, Warszawa . 1976
11 Potapow W. M. Stereochemia PWN, Warszawa . 1986
12 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN Warszawa . 1988
13 Eames J., Peach J. Stereochemia Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. 2008
14 Skarżewski J. Wprowadzenie do syntezy organicznej PWN, Warszawa . 1999
Bibliography used during classes/laboratories/others
1 Jones R. Fizyczna chemia organiczna. Mechanizmy reakcji organicznych PWN, Warszawa . 1988
2 Schwetlick K. Kinetyczne metody badania mechanizmów reakcji PWN, Warszawa. 1975
3 Sykes P. Badanie mechanizmów reakcji organicznych PWN, Warszawa. 1976
4 Praca zbiorowa Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych WNT, Warszawa. 1995
5 Jackson R. Mechanizmy reakcji związków organicznych PWN, Warszawa. 2007
6 Günther H. Spektroskopia magnetycznego rezonansu jądrowego PWN, Warszawa. 1983
7 Paszyc S. Podstawy fotochemii PWN, Warszawa. 1992
8 Praca zbiorowa Zastosowanie nuklidów promieniotwórczych w chemii PWN, Warszawa. 1989
9 Morris D. Stereochemia PWN, Warszawa. 2008
10 Whittaker D. Stereochemia a mechanizm reakcji PWN, Warszawa. 1976
11 Potapow W. M. Stereochemia PWN, Warszawa. 1986
12 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN Warszawa. 1988
13 Eames J., Peach J. Stereochemia Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. 2008
14 Skarżewski J. Wprowadzenie do syntezy organicznej PWN, Warszawa. 1999
15 Moore J., Dalrymple D. Ćwiczenia z chemii organicznej PWN, Warszawa. 1976
16 Isaacs N.S. Fizyczna chemia organiczna. Ćwiczenia PWN, Warszawa. 1974
17 Gawroński J., Gawrońska K., Kacprzak K, Kwit M. Współczesna synteza organiczna PWN, Warszawa. 2004
Bibliography to self-study
1 Jones R. Fizyczna chemia organiczna. Mechanizmy reakcji organicznych PWN, Warszawa. 1988
2 Schwetlick K. Kinetyczne metody badania mechanizmów reakcji PWN, Warszawa. 1975
3 Sykes P. Badanie mechanizmów reakcji organicznych PWN, Warszawa. 1976
4 Praca zbiorowa Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych WNT, Warszawa. 1995
5 Jackson R. Mechanizmy reakcji związków organicznych PWN, Warszawa. 2007
6 Günther H. Spektroskopia magnetycznego rezonansu jądrowego PWN, Warszawa. 1983
7 Paszyc S. Podstawy fotochemii PWN, Warszawa. 1992
8 Praca zbiorowa Zastosowanie nuklidów promieniotwórczych w chemii PWN, Warszawa. 1989
9 Morris D. Stereochemia PWN, Warszawa. 2008
10 Whittaker D. Stereochemia a mechanizm reakcji PWN, Warszawa. 1976
11 Potapow W. M. Stereochemia PWN, Warszawa. 1986
12 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN Warszawa. 1988
13 Eames J., Peach J. Stereochemia Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. 2008
14 Skarżewski J. Wprowadzenie do syntezy organicznej PWN, Warszawa. 1999

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for semester II

Basic requirements in category knowledge: Knowledge of the nomenclature, structure, preparation methods, physical and chemical properties of the basic classes of organic compounds and basic knowlegde of the mechanisms of organic reactions.

Basic requirements in category skills: Ability to name and to predict a chemical properties of organic compounds based on the structure and the effects of electron transfer, ability to work in a laboratory.

Basic requirements in category social competences: Ability to work in a team in the synthesis, isolation of simple organic compounds.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 has knowledge of the analysis of the course of the basic organic reactions lecture, classes, laboratory written exam, colloquium, written test, written report K_W01++
K_W12+
P7S_WG
02 has a basic knowledge of investigation of the structure of stereoisomers and stereochemically transformations lecture, classes, laboratory written exam, colloquium, written test, written report K_W01++
K_W12++
P7S_WG
03 can analyze the course of simple reactions including classical and instrumental methods lecture, classes, laboratory written exam, colloquium, written test, written report K_U08++
P7S_UW
04 can determine the configuration of the optical and geometric isomers, propose methods investigation of their structure and changes lecture, classes written exam, colloquium K_U08++
P7S_UW
05 can individually expand their knowledge in the analysis of the course of the organic reactions performance monitoring K_K01++
P7S_KK

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
2 TK01 Type of organic reaction, chemical individuals, kinds of mechanisms and their short characteristics. Kinetic methods of investigation of organic reactions: kinetic equation and mechanism of reaction, influence of solvent and catalyst on mechanism of reaction, transition state theory, composition and structure of the transition state, kinetic and thermodynamic data for prediction of the mechanism of reaction. Acid-base catalysis. Non-kinetic methods of investigation and prediction of mechanisms of reactions. using instrumental methods for investigation of course of reactions, isotope labelling, stereochemical investigations. Selected mechanisms of organic reactions: photo- and topochemical reactions, chemiluminescent reactions. W01 - W10, C01 - C10, L01 - L15 MEK01 MEK03 MEK05
2 TK02 Kinds of stereoisomers. Determination of relative and absolute configuration. Stereochemistry of typical organic reactions, stereochemical course of the reaction in the Newman and Fischer projection. Methods of investigation of the structure of stereoisomers and stereochemically transformations: experimental methods for determining the configuration of geometric and optical isomers, conformational analysis, kinetics of configurational and conformational changes, the use of chemical and instrumental methods for stereochemical studies. W11 - W15, C11 - C15 MEK02 MEK04

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 2) contact hours: 30.00 hours/sem.
Studying the recommended bibliography: 20.00 hours/sem.
Class (sem. 2) The preparation for a Class: 20.00 hours/sem.
The preparation for a test: 20.00 hours/sem.
contact hours: 30.00 hours/sem.
Laboratory (sem. 2) The preparation for a Laboratory: 5.00 hours/sem.
The preparation for a test: 15.00 hours/sem.
contact hours: 30.00 hours/sem.
Finishing/Making the report: 15.00 hours/sem.
Advice (sem. 2) The participation in Advice: 10.00 hours/sem.
Exam (sem. 2) The preparation for an Exam: 12.00 hours/sem.
The written exam: 3.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture Written exam including the whole scope of material. The final exam grade depends on the amount of points : 3.0 52.0%-62.0% ; 3.5 62.1%-72.0%; 4.0 72.1%-82.0%; 4.5 82.1%-92.0%; 5.0 92.1%-100%.
Class Activity during lectures, passing 3 tests. Repeat test for those who didn’t pass the tests during the semester. The final grade depends on the amount of points: : 3.0 52.0%-62.0% ; 3.5 62.1%-72.0%; 4.0 72.1%-82.0%; 4.5 82.1%-92.0%; 5.0 92.1%-100%.The final grade is a weighted average; the weight of a test is twice greater than a weight of an oral test or minor test.
Laboratory Each laboratory exercise must be positively included. The final grade of the exercise is an arithmetic average from written test, analysis of results and report. The final grade of the laboratory is an arithmetic average from all exercise included in the curriculum.
The final grade Final grade (K): K = 0,4w C + 0,3w L + 0,3 w E; where: C, L, E - positive evaluation of the classes, lab and exam; w - factor related to the time of credit or examination, w= 1.0 first term, w = 0.9 second term , w = 0.8 third term. The grade is rounded according to WKZJK.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 B. Dębska; J. Lubczak; A. Strzałka Polyols and polyurethane foams based on chitosans of various molecular weights 2024
2 E. Chmiel-Bator; J. Lubczak; R. Lubczak; M. Szpiłyk Sposób otrzymywania poliolu 2024
3 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli z wykorzystaniem chitozanu 2024
4 J. Lubczak; A. Strzałka Polyols and Polyurethane Foams Based on Water-Soluble Chitosan 2023
5 J. Lubczak; A. Strzałka Polyurethane foams with hydroxylated chitosan units 2023
6 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli 2023
7 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli z wykorzystaniem chitozanu 2023
8 J. Lubczak; R. Lubczak Oligoetherols and polyurethane foams based on cyclotriphosphazene of reduced fammability 2023
9 J. Lubczak; R. Lubczak; A. Strzałka Chitosan Oligomer as a Raw Material for Obtaining Polyurethane Foams 2023
10 J. Lubczak; R. Lubczak; A. Strzałka Polyols obtained from chitosan 2023
11 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania mieszaniny polioli 2023
12 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania wielofunkcyjnych polieteroli 2023
13 E. Chmiel-Bator; J. Lubczak; R. Lubczak; M. Szpiłyk Polyols and Polyurethane Foams Obtained from Mixture of Metasilicic Acid and Cellulose 2022
14 J. Lubczak; M. Walczak e-caprolactone and pentaerythritol derived oligomer for rigid polyurethane foams preparation 2022
15 J. Lubczak; R. Lubczak Increased Thermal Stability and Reduced Flammability of Polyurethane Foams with an Application of Polyetherols 2022
16 D. Broda; B. Dębska; M. Kus-Liśkiewicz; J. Lubczak; R. Lubczak; D. Szczęch; R. Wojnarowska-Nowak Polyetherols and polyurethane foams from starch 2021
17 E. Bobko; D. Broda; B. Dębska; M. Kus-Liśkiewicz; J. Lubczak; R. Lubczak; D. Szczęch; M. Szpiłyk Flame retardant polyurethane foams with starch unit 2021
18 J. Lubczak; R. Lubczak; D. Szczęch Sposób otrzymywania mieszaniny wielofunkcyjnych polieteroli 2021
19 J. Lubczak; R. Lubczak; M. Szpiłyk Polyetherols and polyurethane foams with cellulose subunits 2021
20 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania wielofunkcyjnych polieteroli 2021
21 J. Lubczak; R. Lubczak; M. Szpiłyk The biodegradable cellulose-derived polyol and polyurethane foam 2021
22 J. Lubczak; R. Lubczak; M. Szpiłyk; M. Walczak Polyol and polyurethane foam from cellulose hydrolysate 2021
23 M. Borowicz; E. Chmiel; J. Lubczak; J. Paciorek-Sadowska Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation 2021
24 E. Chmiel; J. Lubczak Polyurethane foams with 1,3,5-triazine ring, boron and silicon 2020
25 J. Lubczak; M. Szpiłyk Sposób wytwarzania oligoeterolu z pierścieniem azafosfacyklicznym 2020
26 J. Lubczak; R. Lubczak; D. Szczęch From starch to oligoetherols and polyurethane foams 2020
27 B. Dębska; J. Duliban; K. Hęclik; J. Lubczak Analysis of the Possibility and Conditions of Application of Methylene Blue to Determine the Activity of Radicals in Model System with Preaccelerated Cross-Linking of Polyester Resins 2019
28 E. Chmiel; J. Lubczak Polyurethane foams with 1,3,5-triazine ring and silicon atoms 2019
29 E. Chmiel; J. Lubczak Sposób otrzymywania termoodpornych i niepalnych pianek poliuretanowych 2019
30 E. Chmiel; J. Lubczak Synthesis of oligoetherols from mixtures of melamine and boric acid and polyurethane foams formed from these oligoetherols 2019
31 E. Chmiel; J. Lubczak; R. Oliwa Boron-containing non-flammable polyurethane foams 2019
32 J. Lubczak; R. Lubczak; D. Szczęch Sposób otrzymywania mieszaniny wielofunkcyjnych polieteroli 2019
33 J. Lubczak; R. Lubczak; I. Zarzyka Sposób otrzymywania polieteroli z pierścieniami azacyklicznymi 2019
34 M. Borowicz; B. Czupryński; J. Lubczak; J. Paciorek-Sadowska Biodegradable, Flame-retardant, and Bio-Based rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application 2019