logo
Item card
logo

Modern physicochemical methods in the analysis of medicinal products

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Pharmaceutical engineering

The area of study: technical/biological sciences

The profile of studing:

The level of study: first degree study

Type of study: full time

discipline specialities :

The degree after graduating from university: Bachelor of Science (BSc)

The name of the module department : Department of Technology and Materials Chemistry

The code of the module: 12733

The module status: mandatory for teaching programme

The position in the studies teaching programme: sem: 7 / W10 L20 / 2 ECTS / Z

The language of the lecture: Polish

The name of the coordinator: Beata Mossety-Leszczak, DSc, PhD, Eng.

office hours of the coordinator: Poniedziałek: 9.00-10.30 Wtorek: 12.00-13.30

The aim of studying and bibliography

The main aim of study: Acquiring knowledge on the modern physicochemical methods used in the analysis of medicinal products.

The general information about the module: The module takes place in the seventh semester, includes 10 hours of lecture and 20 hours laboratory. The module ends with a final test.

Bibliography required to complete the module
Bibliography used during lectures
1 Rabek J.F. Współczesna wiedza o polimerach PWN Warszawa. 2008
2 Schultze D. Termiczna analiza różnicowa PWN Warszawa. 1974
3 Kasprzycka-Gutman T. Elementy kalorymetrii statycznej i dynamicznej WNT Warszawa . 1993
4 Menard K.P. Dynamic Mechanical analysis, a practical introduction CRC Press, Boca Raton. 2008
5 Rui Y. Analytical methods for polymer characterization Apple Academic Press Inc. . 2018
6 Przedmojski J. Rentgenowskie metody badawcze w inżynierii materiałowej WNT Warszawa. 1990
7 Cullity B.D. Elements of X-Ray Diffraction. 2nd Edition Addison-Wesley Publishing Company Inc., Phillippines. 1978
8 Howland R., Benatar L.; tłumaczenie polskie: Woźniak M., Kozubowski J.M. STM / AFM mikroskopy ze skanującą sondą: elementy teorii i praktyki WIM PW, Warszawa. 2002
Bibliography used during classes/laboratories/others
1 Aktualne artykuły w czasopismach naukowych, dostępnych w PRz .
Bibliography to self-study
1 Instrukcje do ćwiczeń laboratoryjnych .

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for the seventh semester.

Basic requirements in category knowledge: Has basic knowledge in the field of physicochemical properties of materials and instrumental analysis.

Basic requirements in category skills: Has the ability to work in an instrument laboratory and to perform calculations and interpretation of results.

Basic requirements in category social competences: Knows safety and fire protection regulation in chemical laboratory. Capable of working in team and individually.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Knows advanced testing methods of structure and properties of organic and inorganic materials both in a condensed state and in solution. lecture, laboratory exercises written test, written report, skill assessment K_W01+
K_W08++
P6S_WG
02 Has skill ito present the results of the analysis of the properties of materials used in the pharmaceutical industry and can prepare a report. lecture, laboratory exercises written test, written report, skill assessment K_U01+
K_U06++
P6S_UK
P6S_UW
03 Can propose, evaluate the usefulness and apply appropriate instrumental methods to study the structure and properties of materials used in the pharmaceutical industry. lecture, laboratory exercises written test, written report, skill assessment K_U01++
K_U06+++
K_U15+
P6S_UK
P6S_UU
P6S_UW
04 Understands the need for complement the knowledge of the new and updated methods of analysis of materials used in the production of medicinal products. lecture, laboratory exercises written test, written report, skill assessment K_U15+
K_K01+++
P6S_KK
P6S_UU

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
7 TK01 Methods of thermal analysis (DSC, TM-DSC, TGA, TMA, DMA, etc.) and their application in the pharmaceutical industry. W01, W02 MEK01 MEK03
7 TK02 Research methods using electromagnetic radiation: light scattering, X-ray methods (SAXS, WAXS), and neutron scattering. Application of synchrotron radiation. W03, W04 MEK01 MEK03
7 TK03 Microscopic methods: optical and electron microscopy. Scanning probe microscopy. W05 MEK01 MEK03
7 TK04 Application of the DSC method in studies of the active pharmaceutical ingredients and excipients - determination of the temperture of phase transition (including polymorphism) and purity. Compatibility testing of components used in the manufacture of medicinal products. Characterization of thermomechanical properties of materials used in the pharmaceutical industry using the DMA method. X-ray analysis of the active pharmaceutical ingredients and excipients (degree of crystallinity, polymorphism) used in the pharmaceutical industry. L01, L02, L03, L04 MEK01 MEK02 MEK03 MEK04

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 7) The preparation for a test: 5.00 hours/sem.
contact hours: 10.00 hours/sem.
complementing/reading through notes: 1.00 hours/sem.
Studying the recommended bibliography: 4.00 hours/sem.
Laboratory (sem. 7) The preparation for a Laboratory: 2.00 hours/sem.
The preparation for a test: 4.00 hours/sem.
contact hours: 20.00 hours/sem.
Finishing/Making the report: 4.00 hours/sem.
Advice (sem. 7) The participation in Advice: 2.00 hours/sem.
Credit (sem. 7) The preparation for a Credit: 3.00 hours/sem.
The written credit: 2.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture Mark of the written test from the lectures – W1. The test mark depends on the score gained: 50,1-60%: 3.0 60,1-70%: 3.5 70,1-80%: 4.0 80,1-90%: 4.5 90,1-100%: 5.0
Laboratory Student must perform all of the planed experiments, prepare and pass written reports, pass tests from theoretical information connected with laboratory lessons.Average mark from test, written report from each exercise, taking into account the observations of performance of each exercise – W2.
The final grade Final mark: W = w 0,5 W1 + w 0,5 W2; w - weighting factor: w = 1,0 first term, w = 0,9 second term, w = 0,8 third term.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 J. Bieniaś; Ł. Byczyński; D. Czachor-Jadacka; M. Droździel-Jurkiewic; M. Kisiel; B. Mossety-Leszczak; G. Pietruszewska; M. Włodarska; W. Zając Nonterminal liquid crystalline epoxy resins as structurally ordered low Tg thermosets with potential as smart polymers 2024
2 K. Awsiuk; N. Janiszewska; B. Mossety-Leszczak; J. Raczkowska; A. Strachota; B. Strachota; M. Walczak; A. Zioło Synthesis and Morphology Characteristics of New Highly Branched Polycaprolactone PCL 2024
3 M. Kisiel; B. Mossety-Leszczak The Effect of Nonterminal Liquid Crystalline Epoxy Resin Structure and Curing Agents on the Glass Transition of Polymer Networks 2024
4 M. Kisiel; B. Mossety-Leszczak; L. Okrasa; M. Włodarska Modification of the Dielectric and Thermal Properties of Organic Frameworks Based on Nonterminal Epoxy Liquid Crystal with Silicon Dioxide and Titanium Dioxide 2024
5 M. Kisiel; B. Mossety-Leszczak; W. Zając Advancements in The Cross-Linking and Morphology of Liquid Crystals 2024
6 Ł. Byczyński; D. Czachor-Jadacka; M. Kisiel; B. Mossety-Leszczak; B. Pilch-Pitera; K. Pojnar; M. Walczak; J. Wojturska Poliuretanowy lakier proszkowy oraz sposób wytwarzania poliuretanowego lakieru proszkowego 2024
7 Ł. Byczyński; E. Ciszkowicz; D. Czachor-Jadacka; M. Kisiel; B. Mossety-Leszczak; B. Pilch-Pitera; M. Walczak; J. Wojturska Wodna dyspersja kationomerów uretanowo-akrylowych, sposób wytwarzania wodnej dyspersji kationomerów uretanowo-akrylowych oraz sposób wytwarzania fotoutwardzalnej powłoki z wykorzystaniem tej wodnej dyspersji 2024
8 M. Kisiel; B. Mossety-Leszczak; L. Okrasa; M. Włodarska; W. Zając Changes in molecular relaxations and network properties of a triaromatic liquid crystal epoxy resin with nonterminal functional groups 2023
9 J. Karaś; M. Kisiel; B. Mossety-Leszczak; B. Pilch-Pitera; M. Włodarska; W. Zając The application of liquid crystalline epoxy resin for forming hybrid powder coatings 2022
10 K. Byś; J. Hodan; B. Mossety-Leszczak; E. Pavlova; A. Strachota; B. Strachota Self-Healing and Super-Elastomeric PolyMEA-co-SMA Nanocomposites Crosslinked by Clay Platelets 2022
11 M. Kisiel; B. Mossety-Leszczak Liquid Crystalline Polymers 2022
12 B. Mossety-Leszczak; M. Włodarska DFT Studies of Selected Epoxies with Mesogenic Units–Impact of Molecular Structure on Electro-Optical Response 2021
13 K. Byś; B. Mossety-Leszczak; E. Pavlova; M. Steinhart; A. Strachota; B. Strachota; W. Zając Novel Tough and Transparent Ultra-Extensible Nanocomposite Elastomers Based on Poly(2-methoxyethylacrylate) and Their Switching between Plasto-Elasticity and Viscoelasticity 2021
14 M. Kisiel; B. Mossety-Leszczak; A. Strachota; B. Strachota Achieving structural anisotropy of liquid crystalline epoxy by manipulation with crosslinking parameters 2021
15 M. Kisiel; B. Mossety-Leszczak Development in liquid crystalline epoxy resins and composites – A review 2020
16 M. Marchel; B. Mossety-Leszczak; M. Walczak Maize (Zea mays) reaction in response to rubber rag additive into the soil 2020
17 S. Horodecka; D. Kaňková; B. Mossety-Leszczak; M. Netopilík; M. Šlouf; A. Strachota; B. Strachota; M. Vyroubalová; Z. Walterová; A. Zhigunov Low-Temperature Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinkers: A Passive Smart Material with Potential as Viscoelastic Coupling. Part I: Synthesis and Phase Behavior 2020
18 S. Horodecka; D. Kaňková; B. Mossety-Leszczak; M. Netopilík; M. Šlouf; A. Strachota; M. Vyroubalová; A. Zhigunov Meltable copolymeric elastomers based on polydimethylsiloxane with multiplets of pendant liquid-crystalline groups as physical crosslinker: A self-healing structural material with a potential for smart applications. 2020
19 S. Horodecka; M. Kisiel; B. Mossety-Leszczak; M. Šlouf; A. Strachota; B. Strachota Low-Temperature-Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinker: A Passive Smart Material with Potential as Viscoelastic Coupling. Part II—Viscoelastic and Rheological Properties 2020
20 A. Frańczak; M. Kisiel; B. Mossety-Leszczak; D. Szczęch Quantitative analysis of the polymeric blends 2019
21 N. Buszta; M. Kisiel; J. Lechowicz; B. Mossety-Leszczak; R. Ostatek; M. Włodarska Analysis of curing reaction of liquid-crystalline epoxy compositions by using temperature-modulated DSC TOPEM (R) 2019