logo
Karta przedmiotu
logo

Analiza RNAseq

Podstawowe informacje o zajęciach

Cykl kształcenia: 2018/2019

Nazwa jednostki prowadzącej studia: Wydział Chemiczny

Nazwa kierunku studiów: Biotechnologia

Obszar kształcenia: nauki techniczne

Profil studiów:

Poziom studiów: kursy

Forma studiów: stacjonarne

Specjalności na kierunku:

Tytuł otrzymywany po ukończeniu studiów: magister inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Biotechnologii i Bioinformatyki

Kod zajęć: 11931

Status zajęć: fakultatywny

Układ zajęć w planie studiów: sem: 10 / L30 / 0 ECTS / Z

Język wykładowy: polski

Imię i nazwisko koordynatora: prof. dr hab. inż. Mirosław Tyrka

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Zapoznanie studentów z metodą RNAseq i jej możliwościami w badaniu zmian ekspresji genów na poziomie transkryptomu

Ogólne informacje o zajęciach: Moduł realizowany jest w formie laboratoriów 5 godzinnych

Materiały dydaktyczne: Instrukcja laboratoryjna

Wykaz literatury, wymaganej do zaliczenia zajęć

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Rejestracja na semestr, zakwalifikowanie się do projektu

Wymagania wstępne w kategorii Wiedzy: Znajomość budowy DNA i metody PCR

Wymagania wstępne w kategorii Umiejętności: Umiejętność obsługi pipet automatycznych i bazy NCBI

Wymagania wstępne w kategorii Kompetencji społecznych: Umiejętność pracy indywidualnej i zespołowej

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z OEK
01 potrafi zaplanować doświadczenie, którego celem jest zbadanie zmian poziomu ekspresji transkryptomu ćwiczenia problemowe raport pisemny K_W02+++
K_U02+++
T2A_W02+++
T2A_U01+++
T2A_U02+++
T2A_U03+++
T2A_U04+++
02 potrafi wykonać doświadczenie, którego celem jest zbadanie zmian ekspresji genów i przeanalizować uzyskane wyniki laboratorium raport pisemny K_W01+
K_W02++
K_U02+++
K_K01+++
T2A_W02++
T2A_U01+++
T2A_U02+++
T2A_U03+++
T2A_U04+++
T2A_K01+++
T2A_K02+++

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
10 TK01 Zna zasadę działania metody RNAseq oraz możliwości jej zastosowania do rozwiązywania różnych problemów z zakresu biochemii i fizjologii - MEK01
10 TK02 Posiada umiejętności do wykonania oznaczenia RNAseq i analizy danych - MEK02

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Laboratorium (sem. 10) Godziny kontaktowe: 30.00 godz./sem.
Dokończenia/wykonanie sprawozdania: 1.00 godz./sem.
Konsultacje (sem. 10)
Zaliczenie (sem. 10)

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Laboratorium
Ocena końcowa

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 B. Bakera; M. Rakoczy-Trojanowska; M. Szeliga; M. Święcicka; M. Tyrka Identification of candidate genes responsible for chasmogamy in wheat 2023
2 P. Bednarek; A. Dorczyk; T. Drzazga; D. Jasińska; P. Krajewski; B. Ługowska; R. Martofel; P. Matysik; M. Niewińska; D. Ratajczak; K. Rączka; T. Sikora; D. Tyrka; M. Tyrka; E. Witkowski; U. Woźna-Pawlak Genome-wide association mapping in elite winter wheat breeding for yield improvement 2023
3 M. Dyda; G. Gołębiowska; M. Rapacz; M. Szechyńska-Hebda; M. Tyrka; I. Wąsek; M. Wędzony Quantitative trait loci and candidate genes associated with freezing tolerance of winter triticale (× Triticosecale Wittmack) 2022
4 M. Dyda; G. Gołębiowska; M. Rapacz; M. Tyrka; M. Wędzony Genetic mapping of adult-plant resistance genes to powdery mildew in triticale 2022
5 M. Dyda; G. Gołębiowska; M. Rapacz; M. Tyrka; M. Wędzony Mapping of QTL and candidate genes associated with powdery mildew resistance in triticale (× Triticosecale Wittm.) 2022
6 P. Krajewski; R. Marcinkowski; R. Martofel; P. Matysik; M. Mokrzycka; M. Rakoczy-Trojanowska; M. Rokicki; S. Stojałowski; M. Tyrka; U. Woźna-Pawlak; B. Żmijewska Genome-Wide Association Analysis for Hybrid Breeding in Wheat 2022
7 A. Pietrusińska; M. Tyrka Linkage of Lr55 wheat leaf rust resistance gene with microsatellite and DArT-based markers 2021
8 B. Bakera; P. Krajewski; M. Mokrzycka; M. Rakoczy-Trojanowska; M. Szeliga; M. Święcicka; M. Tyrka Identification of Rf Genes in Hexaploid Wheat (Triticumaestivum L.) by RNA-Seq and Paralog Analyses 2021
9 B. Bakera; P. Krajewski; P. Matysik; M. Mokrzycka; M. Rakoczy-Trojanowska; M. Rokicki; S. Stojałowski; M. Szeliga; D. Tyrka; M. Tyrka Evaluation of genetic structure in European wheat cultivars and advanced breeding lines using high-density genotyping-by-sequencing approach 2021
10 J. Buczkowicz; T. Drzazga; B. Ługowska; P. Matysik; K. Rubrycki; M. Semik; D. Tyrka; M. Tyrka; E. Witkowski Identyfikacja efektywnych genów odporności na wybrane choroby wirusowe i grzybowe pszenicy zwyczajnej 2021
11 J. Buczkowicz; T. Drzazga; G. Fic; M. Jaromin; P. Krajewski; P. Matysik; R. Mazur; P. Milczarski; T. Sikora; M. Szeliga; D. Tyrka; M. Tyrka; E. Witkowski Selekcja genomowa pszenicy ozimej 2021
12 E. Ciszkowicz; E. Kaznowska; P. Porzycki; M. Semik; M. Tyrka MiR-93/miR-375: Diagnostic Potential, Aggressiveness Correlation and Common Target Genes in Prostate Cancer 2020
13 G. Czajowski; M. Karbarz; M. Pojmaj; A. Strzembicka; D. Tyrka; M. Tyrka; A. Wardyńska; M. Wędzony Quantitative trait loci mapping of adult-plant resistance to powdery mildew in triticale 2020
14 J. Ciura; M. Szeliga; M. Tyrka Representational Difference Analysis of Transcripts Involved in Jervine Biosynthesis 2020
15 J. Ciura; M. Grzesik; M. Szeliga; M. Tyrka Identification of candidate genes involved in steroidal alkaloids biosynthesis in organ-specific transcriptomes of Veratrum nigrum L. 2019
16 M. Dyda; M. Szechyńska-Hebda; M. Tyrka; I. Wąsek; M. Wędzony Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochium nivale 2019
17 M. Dziurka; K. Hura; T. Hura; A. Ostrowska; M. Tyrka Participation of Wheat and Rye Genome in Drought Induced Senescence in Winter Triticale (X Triticosecale Wittm.) 2019
18 Z. Banaszak; A. Fiust; Z. Nita; W. Orłowska-Job; M. Pojmaj; M. Rapacz; M. Tyrka; M. Wójcik-Jagła Sposób selekcji mrozoodpornych genotypów jęczmienia ozimego 2019