logo
Item card
logo

Stereochemistry

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical Technology

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: past time

discipline specialities : Chemical analysis in industry and environment, Engineering of polymer materials, Organic and polymer technology , Product and ecological process engineering, Technology of medicinal products

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Organic Chemistry

The code of the module: 10538

The module status: mandatory for the speciality Technology of medicinal products

The position in the studies teaching programme: sem: 2 / W9 C9 / 2 ECTS / Z

The language of the lecture: Polish

The name of the coordinator: Prof. Jacek Lubczak, DSc, PhD, Eng.

The aim of studying and bibliography

The main aim of study: The student should obtain knowledge of the general issues of stereochemistry in synthesis of drugs.

The general information about the module: The module is implemented in the second semester. There are 9 hours of lectures and 9 hours of classes. Module ends with a credit.

Bibliography required to complete the module
Bibliography used during lectures
1 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN, Warszawa. 1988
2 Siemion Z. Biostereochemia PWN, Warszawa. 1985
3 Morris D. Stereochemia PWN, Warszawa. 2008
4 Potapow W.M. Stereochemia PWN, Warszawa. 1986
5 Eames J., Peach J. Stereochemia Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. 2008
Bibliography used during classes/laboratories/others
1 Morris D. Stereochemia PWN, Warszawa. 2008
2 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN, Warszawa. 1988
3 Siemion Z. Biostereochemia PWN, Warszawa. 1985
4 Potapow W.M. Stereochemia PWN, Warszawa. 1986
5 Eames J., Peach J. Stereochemia Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. 2008
6 Gawroński J., Gawrońska K., Kacprzak K., Kwit M. Współczesna synteza organiczna. Wybór eksperymentów PWN, Warszawa. 2004
Bibliography to self-study
1 Morris D. Stereochemia PWN, Warszawa. 2008
2 Potapow W.M. Stereochemia PWN, Warszawa. 1986
3 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN, Warszawa. 1988
4 Eames J., Peach J. Stereochemia Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. 2008
5 Siemion Z. Biostereochemia PWN, Warszawa. 1985
6 Gawroński J., Gawrońska K., Kacprzak K., Kwit M. Współczesna synteza organiczna. Wybór eksperymentów PWN, Warszawa. 2004

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for semester II

Basic requirements in category knowledge: Knowledge of the nomenclature, structure, physical and chemical properties of the basic classes of organic compounds and knowlegde of spectral techniques.

Basic requirements in category skills: Ability to name and to predict a chemical properties of organic compounds.

Basic requirements in category social competences: Ability to work in a team.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 has a basic knowledge of the preparation and separation of stereoisomers lecture, classes written test K_W01++
P7S_WG
02 has a basic knowledge of investigation of the structure of stereoisomers and stereochemically transformations lecture, classes written test K_W08++
P7S_WG
03 has a basic knowledge of planning of stereochemical synthesis of drugs lecture, classes written test K_W12+
P7S_WG
04 can determine the configuration of the stereoisomers and can propose the methods of separation of the stereoisomers lecture, classes written test K_U08+
K_U14++
P7S_UW
05 can propose the methods of investigation of the structure and transformations of stereoisomers lecture, classes written test K_U08+
K_U14++
P7S_UW
06 can individually expand their knowledge in the stereochemically transformations written test, performance monitoring K_K01++
P7S_KK

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
2 TK01 Kinds of stereoisomers. Determination of relative and absolute configuration. Stereochemistry and reactivity.Stereochemistry of organic reactions in the Newman and Fischer projection.Stereoselective and stereospecific reactions. Synthesis and separation of racemates. Biochemical methods of obtaining of stereoisomers. Synthesis and asymmetric induction. Asymmetric transformation and kinetic resolution. Strategy and tactics in organic synthesis, retrosynthetic analysis, enantiomerically convergent and divergent synthesis. Stereochemical influences of the catalyst and solvent. The stereochemistry of enzymatic processes. W01-W07, C01-C07 MEK01 MEK04 MEK06
2 TK02 Experimental methods for determining the configuration. Conformational analysis. Kinetics of configurational and conformational changes. The use of chromatographic, spectral and chiroptical methods for stereochemical studies. W08-W12, C08-C12 MEK02 MEK05 MEK06
2 TK03 Stereochemistry in the search and of modifying the leading structure, bioisosterism, reducing the number of conformations, stabilization of conformations, stiffening of the molecule, stereochemical and topographic considerations drug-receptor interaction. W13 - W15, C13-C15 MEK03 MEK06

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 2) contact hours: 9.00 hours/sem.
Studying the recommended bibliography: 10.00 hours/sem.
Class (sem. 2) The preparation for a Class: 10.00 hours/sem.
The preparation for a test: 12.00 hours/sem.
contact hours: 9.00 hours/sem.
Advice (sem. 2)
Credit (sem. 2) The written credit: 3.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture The test includes the whole scope of material. The final grade depends on the amount of points : 3.0 52.0%-62.0% ; 3.5 62.1%-72.0%; 4.0 72.1%-81.0%; 4.5 81.1%-90.5%; 5.0 90.6%-100%
Class Activity during lectures, passing 4-5 tests. Repeat test for those who didn’t pass the tests during the semester. The final grade depends on the amount of points: : 3.0 52.0%-62.0% ; 3.5 62.1%-72.0%; 4.0 72.1%-81.0%; 4.5 81.1%-90.5%; 5.0 90.6%-100%.The final grade is a weighted average; the weight of a test is twice greater than a weight of an oral test or minor test.
The final grade Final grade (K): K = 0,5 w C + 0,5 w Z; where: C, Z - positive evaluation of the classes and lecture; w - factor related to the time of credit, w= 1.0 first term, w = 0.9 second term , w = 0.8 third term. The grade is rounded according to WKZJK.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : yes

Available materials : spectroscopic correlation tables

The contents of the module are associated with the research profile: yes

1 B. Dębska; J. Lubczak; A. Strzałka Polyols and polyurethane foams based on chitosans of various molecular weights 2024
2 E. Chmiel-Bator; J. Lubczak; R. Lubczak; M. Szpiłyk Sposób otrzymywania poliolu 2024
3 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli z wykorzystaniem chitozanu 2024
4 J. Lubczak; A. Strzałka Polyols and Polyurethane Foams Based on Water-Soluble Chitosan 2023
5 J. Lubczak; A. Strzałka Polyurethane foams with hydroxylated chitosan units 2023
6 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli 2023
7 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli z wykorzystaniem chitozanu 2023
8 J. Lubczak; R. Lubczak Oligoetherols and polyurethane foams based on cyclotriphosphazene of reduced fammability 2023
9 J. Lubczak; R. Lubczak; A. Strzałka Chitosan Oligomer as a Raw Material for Obtaining Polyurethane Foams 2023
10 J. Lubczak; R. Lubczak; A. Strzałka Polyols obtained from chitosan 2023
11 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania mieszaniny polioli 2023
12 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania wielofunkcyjnych polieteroli 2023
13 E. Chmiel-Bator; J. Lubczak; R. Lubczak; M. Szpiłyk Polyols and Polyurethane Foams Obtained from Mixture of Metasilicic Acid and Cellulose 2022
14 J. Lubczak; M. Walczak e-caprolactone and pentaerythritol derived oligomer for rigid polyurethane foams preparation 2022
15 J. Lubczak; R. Lubczak Increased Thermal Stability and Reduced Flammability of Polyurethane Foams with an Application of Polyetherols 2022
16 D. Broda; B. Dębska; M. Kus-Liśkiewicz; J. Lubczak; R. Lubczak; D. Szczęch; R. Wojnarowska-Nowak Polyetherols and polyurethane foams from starch 2021
17 E. Bobko; D. Broda; B. Dębska; M. Kus-Liśkiewicz; J. Lubczak; R. Lubczak; D. Szczęch; M. Szpiłyk Flame retardant polyurethane foams with starch unit 2021
18 J. Lubczak; R. Lubczak; D. Szczęch Sposób otrzymywania mieszaniny wielofunkcyjnych polieteroli 2021
19 J. Lubczak; R. Lubczak; M. Szpiłyk Polyetherols and polyurethane foams with cellulose subunits 2021
20 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania wielofunkcyjnych polieteroli 2021
21 J. Lubczak; R. Lubczak; M. Szpiłyk The biodegradable cellulose-derived polyol and polyurethane foam 2021
22 J. Lubczak; R. Lubczak; M. Szpiłyk; M. Walczak Polyol and polyurethane foam from cellulose hydrolysate 2021
23 M. Borowicz; E. Chmiel; J. Lubczak; J. Paciorek-Sadowska Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation 2021
24 E. Chmiel; J. Lubczak Polyurethane foams with 1,3,5-triazine ring, boron and silicon 2020
25 J. Lubczak; M. Szpiłyk Sposób wytwarzania oligoeterolu z pierścieniem azafosfacyklicznym 2020
26 J. Lubczak; R. Lubczak; D. Szczęch From starch to oligoetherols and polyurethane foams 2020
27 B. Dębska; J. Duliban; K. Hęclik; J. Lubczak Analysis of the Possibility and Conditions of Application of Methylene Blue to Determine the Activity of Radicals in Model System with Preaccelerated Cross-Linking of Polyester Resins 2019
28 E. Chmiel; J. Lubczak Polyurethane foams with 1,3,5-triazine ring and silicon atoms 2019
29 E. Chmiel; J. Lubczak Sposób otrzymywania termoodpornych i niepalnych pianek poliuretanowych 2019
30 E. Chmiel; J. Lubczak Synthesis of oligoetherols from mixtures of melamine and boric acid and polyurethane foams formed from these oligoetherols 2019
31 E. Chmiel; J. Lubczak; R. Oliwa Boron-containing non-flammable polyurethane foams 2019
32 J. Lubczak; R. Lubczak; D. Szczęch Sposób otrzymywania mieszaniny wielofunkcyjnych polieteroli 2019
33 J. Lubczak; R. Lubczak; I. Zarzyka Sposób otrzymywania polieteroli z pierścieniami azacyklicznymi 2019
34 M. Borowicz; B. Czupryński; J. Lubczak; J. Paciorek-Sadowska Biodegradable, Flame-retardant, and Bio-Based rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application 2019