logo
Item card
logo

Organic synthesis

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Chemical Technology

The area of study: technical sciences

The profile of studing:

The level of study: second degree study

Type of study: past time

discipline specialities : Chemical analysis in industry and environment, Engineering of polymer materials, Organic and polymer technology , Product and ecological process engineering, Technology of medicinal products

The degree after graduating from university: Master of Science (MSc)

The name of the module department : Department of Organic Chemistry

The code of the module: 10512

The module status: mandatory for the speciality Organic and polymer technology

The position in the studies teaching programme: sem: 2 / W9 C9 L18 / 4 ECTS / Z

The language of the lecture: Polish

The name of the coordinator: Prof. Jacek Lubczak, DSc, PhD, Eng.

The aim of studying and bibliography

The main aim of study: The student should obtain knowledge of the planning of organic synthesis including the stereochemically synthesis and transformation of organic compounds. Messages of basic course of organic chemistry are supplemented for problems concerning the use of multifunctional compounds, organic compounds of sulfur, phosphorus and heterocyclic compounds in synthesis.

The general information about the module: The module is implemented in the second semester. There are 9 hours of lectures, 18 hours of classes and 27 hours laboratory. Module ends with a credit.

Bibliography required to complete the module
Bibliography used during lectures
1 Mastalerz P. Chemia organiczna PWN, Warszawa . 1984
2 Morrison R., Boyd R. Chemia organiczna, t. I i II PWN, Warszawa . 1985
3 Morrison R., Boyd R. Chemia organiczna. Rozwiązywanie problemów PWN, Warszawa . 1986
4 McMurry J. Chemia organiczna, t. I i II PWN, Warszawa . 2000
5 Willis K., Wills M. Synteza organiczna Wydawnictwo UJ, Kraków . 2004
6 Skarżewski J. Wprowadzenie do syntezy organicznej PWN, Warszawa . 1999
7 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN Warszawa . 1988
8 Gawroński J., Gawrońska K., Kacprzak K, Kwit M. Współczesna synteza organiczna PWN, Warszawa . 2004
Bibliography used during classes/laboratories/others
1 Mastalerz P. Chemia organiczna PWN, Warszawa. 1984
2 Morrison R., Boyd R. Chemia organiczna, t. I i II PWN, Warszawa. 1985
3 Morrison R., Boyd R. Chemia organiczna. Rozwiązywanie problemów PWN, Warszawa. 1986
4 McMurry J. Chemia organiczna, t. I i II PWN, Warszawa. 2000
5 Willis K., Wills M. Synteza organiczna Wydawnictwo UJ, Kraków. 2004
6 Skarżewski J. Wprowadzenie do syntezy organicznej PWN, Warszawa. 1999
7 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN Warszawa. 1988
8 Gawroński J., Gawrońska K., Kacprzak K, Kwit M. Współczesna synteza organiczna PWN, Warszawa. 2004
9 Chmiel-Szukiewicz E., Kijowska D., Zarzyka-Niemiec I. Laboratorium chemii organicznej. Metody syntezy i analizy jakościowej związków organicznych Wydawnictwo Oświatowe FOSZE, Rzeszów. 2010
Bibliography to self-study
1 Mastalerz P. Chemia organiczna PWN, Warszawa . 1984
2 Morrison R., Boyd R. Chemia organiczna, t. I i II PWN, Warszawa . 1985
3 Morrison R., Boyd R. Chemia organiczna. Rozwiązywanie problemów PWN, Warszawa . 1986
4 McMurry J. Chemia organiczna, t. I i II PWN, Warszawa . 2000
5 Willis K., Wills M. Synteza organiczna Wydawnictwo UJ, Kraków . 2004
6 Skarżewski J. Wprowadzenie do syntezy organicznej PWN, Warszawa . 1999
7 Gawroński J., Gawrońska K. Stereochemia w syntezie organicznej PWN Warszawa . 1988
8 Gawroński J., Gawrońska K., Kacprzak K, Kwit M. Współczesna synteza organiczna PWN, Warszawa . 2004

Basic requirements in category knowledge/skills/social competences

Formal requirements: Registration for semester II

Basic requirements in category knowledge: Knowledge of the nomenclature, structure, preparation methods, physical and chemical properties of the basic classes of organic compounds and basic knowlegde of the mechanisms of organic reactions.

Basic requirements in category skills: Ability to name and to predict a chemical properties of organic compounds based on the structure and the effects of electron transfer, ability to work in a laboratory.

Basic requirements in category social competences: Ability to work in a team in the synthesis, isolation of simple organic compounds.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 has a basic knowledge of the names of the multifunctional organic compounds lecture, classes colloquium K_W01+
P7S_WG
02 has a basic knowledge of the synthesis of carbon skeleton, carbo- and heterocyclic ring lecture, classes colloquium K_W01++
K_W12++
P7S_WG
03 has a basic knowledge of the planning and conducting organic synthesis lecture, classes, laboratory colloquium, written test, written report K_W12+++
P7S_WG
04 can propose the basic methods of the synthesis of carbon skeleton, carbo- and heterocyclic ring lecture, classes, laboratory colloquium, written test, written report K_U08++
P7S_UW
05 can separate optically active compounds and carry out simple synthesis of their participation laboratory written test, performance monitoring, written report K_U08++
P7S_UW
06 can carry out the synthesis of carbo- and heterocyclicring Laboratory written test, performance monitoring, written report K_U08++
P7S_UW
07 can individually expand their knowledge in the planning and conducting organic synthesis performance monitoring K_K01++
P7S_KK

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
2 TK01 Complementary information about the nomenclature, synthesis and transformations of some multifunctional organic compounds: two- and polycarboxylic acids, acids with different functional groups (halogenated carboxilic acids, hydroxy acids, oxo acid, amino acids), lactides, lactones, lactams. W01 - W03, C01 - C03 MEK01
2 TK02 Basic of designing a organic synthesis - retrosynthetic analysis, synthons, linear and convergent synthesis, strategy and tactics of synthesis. Stereoselective and stereospecific reactions, their division. Pericyclic reactions. The use carbene, diazomethane, diethyl malonate, ethyl 3-oxobutanoate in synthesis. Synthesis of sulfur-containing compounds. Some heterocyclic compounds. Methods of the synthesis of the carbon skeleton. Synthesis and transformation of carbo- and heterocyclic ring, ring-opening reactions, preparation of spiro compounds and team of rings, insertion reactions. The use of organometallic compounds in organic synthesis. Rearrangement reactions, types of tautomerism. W04 - W15, C04 - C15, L03 - L05 MEK02 MEK03 MEK04 MEK06 MEK07
2 TK03 Synthesis with the participation of stereoisomers, separation of racemates. L01, L02 MEK05

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 2) contact hours: 9.00 hours/sem.
Studying the recommended bibliography: 10.00 hours/sem.
Class (sem. 2) The preparation for a Class: 15.00 hours/sem.
The preparation for a test: 15.00 hours/sem.
contact hours: 9.00 hours/sem.
Laboratory (sem. 2) The preparation for a Laboratory: 5.00 hours/sem.
The preparation for a test: 15.00 hours/sem.
contact hours: 18.00 hours/sem.
Finishing/Making the report: 5.00 hours/sem.
Advice (sem. 2)
Credit (sem. 2)

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture The test includes the whole scope of material. The final grade depends on the amount of points : 3.0 52.0%-62.0% ; 3.5 62.1%-72.0%; 4.0 72.1%-81.0%; 4.5 81.1%-90.5%; 5.0 90.6%-100%.
Class Activity during lectures, passing 3 tests. Repeat test for those who didn’t pass the tests during the semester. The final grade depends on the amount of points: : 3.0 52.0%-62.0% ; 3.5 62.1%-72.0%; 4.0 72.1%-81.0%; 4.5 81.1%-90.5%; 5.0 90.6%-100%.The final grade is a weighted average; the weight of a test is twice greater than a weight of an oral test or minor test.
Laboratory Each laboratory exercise must be positively included. The final grade of the exercise is an arithmetic average from written test, as well as combined grade for experiment and report . The final grade of the laboratory is an arithmetic average from all exercise included in the curriculum.
The final grade Final grade (K): K = 0,35 w C + 0,3 w L + 0,35 w Z; where: C, L, Z - positive evaluation of the classes, lab and lecture; w - factor related to the time of credit, w= 1.0 first term, w = 0.9 second term , w = 0.8 third term. The grade is rounded according to WKZJK.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 B. Dębska; J. Lubczak; A. Strzałka Polyols and polyurethane foams based on chitosans of various molecular weights 2024
2 E. Chmiel-Bator; J. Lubczak; R. Lubczak; M. Szpiłyk Sposób otrzymywania poliolu 2024
3 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli z wykorzystaniem chitozanu 2024
4 J. Lubczak; A. Strzałka Polyols and Polyurethane Foams Based on Water-Soluble Chitosan 2023
5 J. Lubczak; A. Strzałka Polyurethane foams with hydroxylated chitosan units 2023
6 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli 2023
7 J. Lubczak; A. Strzałka Sposób wytwarzania wielofunkcyjnych polioli z wykorzystaniem chitozanu 2023
8 J. Lubczak; R. Lubczak Oligoetherols and polyurethane foams based on cyclotriphosphazene of reduced fammability 2023
9 J. Lubczak; R. Lubczak; A. Strzałka Chitosan Oligomer as a Raw Material for Obtaining Polyurethane Foams 2023
10 J. Lubczak; R. Lubczak; A. Strzałka Polyols obtained from chitosan 2023
11 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania mieszaniny polioli 2023
12 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania wielofunkcyjnych polieteroli 2023
13 E. Chmiel-Bator; J. Lubczak; R. Lubczak; M. Szpiłyk Polyols and Polyurethane Foams Obtained from Mixture of Metasilicic Acid and Cellulose 2022
14 J. Lubczak; M. Walczak e-caprolactone and pentaerythritol derived oligomer for rigid polyurethane foams preparation 2022
15 J. Lubczak; R. Lubczak Increased Thermal Stability and Reduced Flammability of Polyurethane Foams with an Application of Polyetherols 2022
16 D. Broda; B. Dębska; M. Kus-Liśkiewicz; J. Lubczak; R. Lubczak; D. Szczęch; R. Wojnarowska-Nowak Polyetherols and polyurethane foams from starch 2021
17 E. Bobko; D. Broda; B. Dębska; M. Kus-Liśkiewicz; J. Lubczak; R. Lubczak; D. Szczęch; M. Szpiłyk Flame retardant polyurethane foams with starch unit 2021
18 J. Lubczak; R. Lubczak; D. Szczęch Sposób otrzymywania mieszaniny wielofunkcyjnych polieteroli 2021
19 J. Lubczak; R. Lubczak; M. Szpiłyk Polyetherols and polyurethane foams with cellulose subunits 2021
20 J. Lubczak; R. Lubczak; M. Szpiłyk Sposób wytwarzania wielofunkcyjnych polieteroli 2021
21 J. Lubczak; R. Lubczak; M. Szpiłyk The biodegradable cellulose-derived polyol and polyurethane foam 2021
22 J. Lubczak; R. Lubczak; M. Szpiłyk; M. Walczak Polyol and polyurethane foam from cellulose hydrolysate 2021
23 M. Borowicz; E. Chmiel; J. Lubczak; J. Paciorek-Sadowska Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation 2021
24 E. Chmiel; J. Lubczak Polyurethane foams with 1,3,5-triazine ring, boron and silicon 2020
25 J. Lubczak; M. Szpiłyk Sposób wytwarzania oligoeterolu z pierścieniem azafosfacyklicznym 2020
26 J. Lubczak; R. Lubczak; D. Szczęch From starch to oligoetherols and polyurethane foams 2020
27 B. Dębska; J. Duliban; K. Hęclik; J. Lubczak Analysis of the Possibility and Conditions of Application of Methylene Blue to Determine the Activity of Radicals in Model System with Preaccelerated Cross-Linking of Polyester Resins 2019
28 E. Chmiel; J. Lubczak Polyurethane foams with 1,3,5-triazine ring and silicon atoms 2019
29 E. Chmiel; J. Lubczak Sposób otrzymywania termoodpornych i niepalnych pianek poliuretanowych 2019
30 E. Chmiel; J. Lubczak Synthesis of oligoetherols from mixtures of melamine and boric acid and polyurethane foams formed from these oligoetherols 2019
31 E. Chmiel; J. Lubczak; R. Oliwa Boron-containing non-flammable polyurethane foams 2019
32 J. Lubczak; R. Lubczak; D. Szczęch Sposób otrzymywania mieszaniny wielofunkcyjnych polieteroli 2019
33 J. Lubczak; R. Lubczak; I. Zarzyka Sposób otrzymywania polieteroli z pierścieniami azacyklicznymi 2019
34 M. Borowicz; B. Czupryński; J. Lubczak; J. Paciorek-Sadowska Biodegradable, Flame-retardant, and Bio-Based rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application 2019