logo PRZ
Karta przedmiotu
logo WYDZ

Algebra liniowa


Podstawowe informacje o zajęciach

Cykl kształcenia:
2018/2019
Nazwa jednostki prowadzącej studia:
Wydział Matematyki i Fizyki Stosowanej
Nazwa kierunku studiów:
Matematyka
Obszar kształcenia:
nauki ścisłe
Profil studiów:
ogólnoakademicki
Poziom studiów:
pierwszego stopnia
Forma studiów:
stacjonarne
Specjalności na kierunku:
zastosowania matematyki w ekonomii, Zastosowania matematyki w informatyce
Tytuł otrzymywany po ukończeniu studiów:
licencjat
Nazwa jednostki prowadzącej zajęcia:
Katedra Analizy Nieliniowej
Kod zajęć:
1045
Status zajęć:
obowiązkowy dla programu zastosowania matematyki w ekonomii, Zastosowania matematyki w informatyce
Układ zajęć w planie studiów:
sem: 2 / W30 C30 / 6 ECTS / E
Język wykładowy:
polski
Imię i nazwisko koordynatora:
dr Agnieszka Chlebowicz
Terminy konsultacji koordynatora:
poniedziałek 10.30 - 12.00 wtorek 10.30 - 12.00

Cel kształcenia i wykaz literatury

Główny cel kształcenia:
Zapoznanie się z ważniejszymi przestrzeniami liniowymi skończenie i nieskończenie wymiarowymi, umiejętność posługiwania się pojęciem przekształcenia liniowego oraz pojęciem macierzy przekształcenia liniowego, umiejętność znajdowania wartości własnych i wektorów własnych przekształcenia liniowego

Ogólne informacje o zajęciach:
Moduł obejmuje 30 godz. wykładów i 30 godz. ćwiczeń realizowanych w 2 semestrze studiów.

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Banaszak G., Gajda W. Elementy algebry liniowej Wydawnictwa Naukowo-Techniczne, Warszawa. 2002
2 Białynicki-Birula A. Algebra liniowa z geometrią Państwowe Wydawnictwo Naukowe, Warszawa. 1976
3 Gancarzewicz J. Algebra liniowa i jej zastosowania Wydawnictwo Uniwersytetu Jagiellońskiego. 2004
4 Jurlewicz T., Skoczylas Z. Algebra liniowa. Definicje, twierdzenia, wzory Oficyna Wydawnicza GiS, Wrocław. 2005
5 Klukowski J., Nabiałek I. Algebra dla studentów Wydawnictwa Naukowo-Techniczne, Warszawa. 2009
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 Jurlewicz T., Skoczylas Z. Algebra liniowa. Przykłady i zadania Oficyna Wydawnicza GiS, Wrocław. 2005
2 Przybyło S., Szlachtowski A. Algebra i geometria afiniczna w zadaniach Wydawnictwa Naukowo-Techniczne, Warszawa. 1983
3 Rutkowski J. Algebra liniowa w zadaniach Państwowe Wydawnictwo Naukowe, Warszawa. 2008
Literatura do samodzielnego studiowania
1 Jurlewicz T. Algebra liniowa. Kolokwia i egzaminy. Oficyna Wydawnicza GiS, Wrocław. 2010
2 Kostrikin A. I. Zbiór zadań z algebry Państwowe Wydawnictwo Naukowe, Warszawa. 2005
3 Mostowski A., Stark M. Algebra liniowa Państwowe Wydawnictwo Naukowe, Warszawa. 1975
4 Nabiałek I. Zadania z algebry liniowej Wydawnictwa Naukowo-Techniczne, Warszawa. 2006

Wymagania wstępne w kategorii wiedzy / umiejętności / kompetencji społecznych

Wymagania formalne:
Student spełnia wymagania formalne określone w regulaminie studiów

Wymagania wstępne w kategorii Wiedzy:
Znajomość podstawowych wiadomości na temat macierzy i układów równań liniowych oraz podstawowych struktur algebraicznych.

Wymagania wstępne w kategorii Umiejętności:
Umiejętność obliczania rzędu macierzy oraz wyznacznika macierzy kwadratowej. Umiejętność rozwiązywania układów równań liniowych.

Wymagania wstępne w kategorii Kompetencji społecznych:
Przygotowanie do podjęcia merytorycznie uzasadnionych działań matematycznych w celu rozwiązania postawionego problemu.

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z OEK
MEK01 posługuje się pojęciem przestrzeni (oraz podprzestrzeni) liniowej wykład, ćwiczenia pisemne kolokwium, egzamin pisemny K-W01+
K-W02+
K-W03+
K-W04+
K-W05+
K-U16++
W1
W2
W3
U1
MEK02 potrafi sprawdzić liniową niezależność układu wektorów, wyznaczyć generatory oraz wskazać bazę przestrzeni liniowej wykład, ćwiczenia pisemne kolokwium, egzamin pisemny K-W01+
K-W02+
K-W04++
K-W05+
K-U16++
W1
W3
U1
MEK03 posługuje się pojęciem przekształcenia liniowego wykład, ćwiczenia pisemne kolokwium, egzamin pisemny K-W01+
K-W03+
K-W05++
K-U16+++
W1
W2
W3
U1
MEK04 potrafi wyznaczyć jądro i obraz przekształcenia liniowego wykład, ćwiczenia pisemne kolokwium, egzamin pisemny K-W01+
K-W05+
K-U16++
W1
U1
MEK05 znajduje macierze przekształceń liniowych w różnych bazach, oblicza wartości własne i wektory własne endomorfizmów, sprawdza, czy wektory własne endomorfizmu tworzą bazę przestrzeni wykład, ćwiczenia pisemne kolokwium, egzamin pisemny K-W01+
K-U16++
K-U20++
K-U21+
W1
U1

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
2 TK01 Definicja i przykłady przestrzeni liniowych oraz podprzestrzeni liniowych. Działania na podprzestrzeniach. W01, W02, C01, C02 MEK01
2 TK02 Kombinacja liniowa wektorów, powłoka liniowa. Liniowa niezależność i zależność wektorów. W03, W04, C03, C04 MEK01 MEK02
2 TK03 Baza i wymiar przestrzeni liniowej. Twierdzenie Steinitza o wymianie. Współrzędne wektora w bazie. W05, W06, W07, C05, C06, C07 MEK01 MEK02
2 TK04 Przekształcenia liniowe: definicja i przykłady, jądro i obraz przekształcenia liniowego, macierz przekształcenia liniowego, macierz przejścia z bazy do bazy, pojęcie monomorfizmu, epimorfizmu i izomorfizmu. W08, W09, W10, W11, C08, C09, C10 MEK03 MEK04 MEK05
2 TK05 Endomorfizmy: podprzestrzenie niezmiennicze, wartości własne i wektory własne endomorfizmu, diagonalizowalność endomorfizmu. W12, W13, W14, W15, C11, C12, C13 MEK03 MEK05
2 TK06 Kolokwia z materiału zrealizowanego na wykładach i ćwiczeniach. C14, C15 MEK01 MEK02 MEK03 MEK04 MEK05

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 2) Godziny kontaktowe: 30.00 godz./sem.
Uzupełnienie/studiowanie notatek: 20.00 godz./sem.
Studiowanie zalecanej literatury: 15.00 godz./sem.
Ćwiczenia/Lektorat (sem. 2) Przygotowanie do ćwiczeń: 15.00 godz./sem.
Przygotowanie do kolokwium: 20.00 godz./sem.
Godziny kontaktowe: 30.00 godz./sem.
Dokończenia/studiowanie zadań: 15.00 godz./sem.
Konsultacje (sem. 2)
Egzamin (sem. 2) Przygotowanie do egzaminu: 10.00 godz./sem.
Egzamin pisemny: 2.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Zaliczenia wykładu dokonuje się na podstawie egzaminu.
Ćwiczenia/Lektorat Ocena z ćwiczeń jest średnią arytmetyczną ocen uzyskanych z MEKów., zaokrągloną do obowiązującej skali ocen. Aktywność na ćwiczeniach może podwyższyć ocenę z ćwiczeń.
Ocena końcowa

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi nie