logo
Item card
logo

Plant biochemistry

Some basic information about the module

Cycle of education: 2022/2023

The name of the faculty organization unit: The faculty Chemistry

The name of the field of study: Biotechnology

The area of study: technical sciences

The profile of studing:

The level of study: first degree study

Type of study: full time

discipline specialities : Applied biochemistry, Purification and analysis of biotechnological products

The degree after graduating from university: Bachelor of Science (BSc)

The name of the module department : Department of Biochemistry and Bioinformatics

The code of the module: 10320

The module status: mandatory for the speciality Applied biochemistry

The position in the studies teaching programme: sem: 5 / W15 L15 / 2 ECTS / Z

The language of the lecture: Polish

The name of the coordinator 1: Prof. Mirosław Tyrka, DSc, PhD, Eng.

The name of the coordinator 2: Piotr Dziadczyk, PhD, Eng.

semester 5: Ewa Ciszkowicz, PhD

The aim of studying and bibliography

The main aim of study: Familiarize students with the biochemical processes in plants important for the industry

The general information about the module: Students become familiar with biological transformations of selected chemical compounds and become acquainted with selected biochemical processes in plants

Teaching materials: aktualne prace przeglądowe

Bibliography required to complete the module
Bibliography used during lectures
1 Heldt H-W, Piechulla B Plant Biochemistry Elsvevier Academic Press. 2011

Basic requirements in category knowledge/skills/social competences

Formal requirements: Valid registration

Basic requirements in category knowledge: Basic knowledge of cell biology, biochemistry and microbiology

Basic requirements in category skills: Self-education skills. Ability to work in a laboratory under teacher supervision.

Basic requirements in category social competences: Self-education skills. Ability to work in a laboratory under teacher supervision.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
01 Metabolism of the cell of the leaf. Photosynthesis. CO2 assimilation. Photorespiration. Biosynthesis and transport of carbohydrates. Assimilation and binding nitrogen compounds and sulfur. Transport of assimilation products. Ecological functions of secondary metabolites and isoprenoid. Regulation of growth and organ development. The interaction of plant genomes. Biosynthesis of proteins in plants. Lecture Written exam K_W05+++
K_W06+
K_W14+
P6S_WG
02 Study of variation in genes determining biochemical changes in plants. Classes test, observation of performance, written report K_W06++
K_U09++
K_U18+
K_K03++
P6S_KR
P6S_UO
P6S_UW
P6S_WG

Attention: Depending on the epidemic situation, verification of the achieved learning outcomes specified in the study program, in particular credits and examinations at the end of specific classes, can be implemented remotely (real-time meetings).

The syllabus of the module

Sem. TK The content realized in MEK
5 TK01 Familiarization with biochemical specificity of plant cell Wykłady1-15 MEK01
5 TK02 Identifying and obtaining gene of desired function. Laboratoria MEK02

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 5) contact hours: 15.00 hours/sem.
Others: 8.00 hours/sem.
Laboratory (sem. 5) The preparation for a Laboratory: 3.00 hours/sem.
The preparation for a test: 5.00 hours/sem.
contact hours: 15.00 hours/sem.
Advice (sem. 5)
Credit (sem. 5) The preparation for a Credit: 12.00 hours/sem.
The written credit: 1.00 hours/sem.

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture The grade is issued on the basis of written exam results.
Laboratory The grade is issued on the basis of average grade of raport (50%) and final test (50%).
The final grade Laboratory grade (30%) and evaluation of the lectures (70%)

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile: yes

1 B. Bakera; M. Rakoczy-Trojanowska; M. Szeliga; M. Święcicka; M. Tyrka Identification of candidate genes responsible for chasmogamy in wheat 2023
2 P. Bednarek; A. Dorczyk; T. Drzazga; D. Jasińska; P. Krajewski; B. Ługowska; R. Martofel; P. Matysik; M. Niewińska; D. Ratajczak; K. Rączka; T. Sikora; D. Tyrka; M. Tyrka; E. Witkowski; U. Woźna-Pawlak Genome-wide association mapping in elite winter wheat breeding for yield improvement 2023
3 M. Dyda; G. Gołębiowska; M. Rapacz; M. Szechyńska-Hebda; M. Tyrka; I. Wąsek; M. Wędzony Quantitative trait loci and candidate genes associated with freezing tolerance of winter triticale (× Triticosecale Wittmack) 2022
4 M. Dyda; G. Gołębiowska; M. Rapacz; M. Tyrka; M. Wędzony Genetic mapping of adult-plant resistance genes to powdery mildew in triticale 2022
5 M. Dyda; G. Gołębiowska; M. Rapacz; M. Tyrka; M. Wędzony Mapping of QTL and candidate genes associated with powdery mildew resistance in triticale (× Triticosecale Wittm.) 2022
6 P. Krajewski; R. Marcinkowski; R. Martofel; P. Matysik; M. Mokrzycka; M. Rakoczy-Trojanowska; M. Rokicki; S. Stojałowski; M. Tyrka; U. Woźna-Pawlak; B. Żmijewska Genome-Wide Association Analysis for Hybrid Breeding in Wheat 2022
7 A. Pietrusińska; M. Tyrka Linkage of Lr55 wheat leaf rust resistance gene with microsatellite and DArT-based markers 2021
8 B. Bakera; P. Krajewski; M. Mokrzycka; M. Rakoczy-Trojanowska; M. Szeliga; M. Święcicka; M. Tyrka Identification of Rf Genes in Hexaploid Wheat (Triticumaestivum L.) by RNA-Seq and Paralog Analyses 2021
9 B. Bakera; P. Krajewski; P. Matysik; M. Mokrzycka; M. Rakoczy-Trojanowska; M. Rokicki; S. Stojałowski; M. Szeliga; D. Tyrka; M. Tyrka Evaluation of genetic structure in European wheat cultivars and advanced breeding lines using high-density genotyping-by-sequencing approach 2021
10 J. Buczkowicz; T. Drzazga; B. Ługowska; P. Matysik; K. Rubrycki; M. Semik; D. Tyrka; M. Tyrka; E. Witkowski Identyfikacja efektywnych genów odporności na wybrane choroby wirusowe i grzybowe pszenicy zwyczajnej 2021
11 J. Buczkowicz; T. Drzazga; G. Fic; M. Jaromin; P. Krajewski; P. Matysik; R. Mazur; P. Milczarski; T. Sikora; M. Szeliga; D. Tyrka; M. Tyrka; E. Witkowski Selekcja genomowa pszenicy ozimej 2021
12 E. Ciszkowicz; E. Kaznowska; P. Porzycki; M. Semik; M. Tyrka MiR-93/miR-375: Diagnostic Potential, Aggressiveness Correlation and Common Target Genes in Prostate Cancer 2020
13 G. Czajowski; M. Karbarz; M. Pojmaj; A. Strzembicka; D. Tyrka; M. Tyrka; A. Wardyńska; M. Wędzony Quantitative trait loci mapping of adult-plant resistance to powdery mildew in triticale 2020
14 J. Ciura; M. Szeliga; M. Tyrka Representational Difference Analysis of Transcripts Involved in Jervine Biosynthesis 2020
15 J. Ciura; M. Grzesik; M. Szeliga; M. Tyrka Identification of candidate genes involved in steroidal alkaloids biosynthesis in organ-specific transcriptomes of Veratrum nigrum L. 2019
16 M. Dyda; M. Szechyńska-Hebda; M. Tyrka; I. Wąsek; M. Wędzony Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochium nivale 2019
17 M. Dziurka; K. Hura; T. Hura; A. Ostrowska; M. Tyrka Participation of Wheat and Rye Genome in Drought Induced Senescence in Winter Triticale (X Triticosecale Wittm.) 2019
18 Z. Banaszak; A. Fiust; Z. Nita; W. Orłowska-Job; M. Pojmaj; M. Rapacz; M. Tyrka; M. Wójcik-Jagła Sposób selekcji mrozoodpornych genotypów jęczmienia ozimego 2019