logo PRZ
Item card
logo WYDZ

Bioinformatics in diagnostics


Some basic information about the module

Cycle of education:
2022/2023
The name of the faculty organization unit:
The faculty Chemistry
The name of the field of study:
Biotechnology
The area of study:
technical sciences
The profile of studing:
The level of study:
second degree study
Type of study:
full time
discipline specialities :
Laboratory diagnostics in biotechnology, Pharmaceutical biotechnology, Process and bioprocess engineering, Purification and analysis of biotechnological products
The degree after graduating from university:
Master of Science (MSc)
The name of the module department :
Department of Biochemistry and Bioinformatics
The code of the module:
10254
The module status:
mandatory for the speciality Laboratory diagnostics in biotechnology
The position in the studies teaching programme:
sem: 2 / W15 L15 / 2 ECTS / Z
The language of the lecture:
Polish
The name of the coordinator 1:
Andrzej Łyskowski, PhD, Eng.
office hours of the coordinator:
Konsultacje w trybie zdalnym po wcześniejszym zgłoszeniu: Poniedziałek: 12:15 - 13:45; Czwartek: 12:15 - 13:45.
The name of the coordinator 2:
Grzegorz Fic, PhD, Eng.
office hours of the coordinator:
wtorki, 19-20.30 online MS Teams, e-mail gfic@prz.edu.pl - zawsze
semester 2:
Marcin Jaromin, MSc, Eng.

The aim of studying and bibliography

The main aim of study:
Gaining knowledge and skills in computer-aided research in pharmacy

The general information about the module:
The module is realized in the form of lectures (15 h) and problem exercises in computer laboratory (15 h)

Teaching materials:
Materiały dydaktyczne dostepne on-line w portalu http://e-learning.prz.edu.pl/.

Bibliography required to complete the module
Bibliography used during lectures
1 A. D. Baxevanis, B. F. F. Ouellette Bioinformatyka . Podręcznik do analizy genów i białek PWN Warszawa. 2004
2 P. G. Higgs, T. K. Attwood Bioinformatyka i ewolucja molekularna PWN Warszawa. 2008
3 J.Xiong Podstawy bioinformatyki Wydawnictwa Uniwersytetu Warszawskiego. 2009
Bibliography used during classes/laboratories/others
1 Materiały dydaktyczne dostepne on-line w portalu http://e-learning.prz.edu.pl/. - -. -

Basic requirements in category knowledge/skills/social competences

Formal requirements:
Registration for the current semester.

Basic requirements in category knowledge:
Basic knowledge of organic chemistry, molecular biology, computer usage.

Basic requirements in category skills:
Computer skills - Windows.

Basic requirements in category social competences:
Ability to work individually and in a team of 2-3 persons.

Module outcomes

MEK The student who completed the module Types of classes / teaching methods leading to achieving a given outcome of teaching Methods of verifying every mentioned outcome of teaching Relationships with KEK Relationships with PRK
MEK01 Can use and modify parameters od dedicated computer programs to solve simple problems in molecular biology and biotechnology lecture, laboratory test, observation of the task performance, project report, K-W02++
K-U07++
K-K02+
P7S-KR
P7S-UW
P7S-WG
MEK02 Knows the basics of biological information processing using computer systems. lecture, laboratory written exam, test, observation of the task performance, project report K-W02++
K-U07++
P7S-UW
P7S-WG
MEK03 Is able to use specialized computer programs for searching and for analysis of biological information. laboratory test, observation of the task performance, project report K-W02++
K-U07++
P7S-UW
P7S-WG
MEK04 Can use the selected artificial intelligence methods to support engineering tasks and scientific research in the field of molecular biology and biotechnology lecture, laboratory test, written report K-W02+++
K-U07++
P7S-UW
P7S-WG

The syllabus of the module

Sem. TK The content realized in MEK
2 TK01 Computer-aided laboratory diagnostics in biotechnology W01 MEK04
2 TK02 Collecting experimental data. Methods for the classification of samples. Processing of experimental data W02 MEK04
2 TK03 Construction of statistical models, parameter estimation and evaluation of the relevance of the results of multivariate experiments. W03 MEK03 MEK04
2 TK04 Regular expression and their application in diagnostics W06 MEK01
2 TK05 Searching similarities between genomes sequences L01 MEK03
2 TK06 Physical and genetic maps L02 MEK02
2 TK07 Computer gene prediction W07 MEK04

The student's effort

The type of classes The work before classes The participation in classes The work after classes
Lecture (sem. 2) The preparation for a test: 5.00 hours/sem.
contact hours: 15.00 hours/sem.
Studying the recommended bibliography: 2.00 hours/sem.
Laboratory (sem. 2) The preparation for a Laboratory: 5.00 hours/sem.
The preparation for a test: 10.00 hours/sem.
contact hours: 15.00 hours/sem.
Finishing/Making the report: 5.00 hours/sem.
Advice (sem. 2)
Credit (sem. 2)

The way of giving the component module grades and the final grade

The type of classes The way of giving the final grade
Lecture The pass note is granted to students with at least 50% of points from the written test.
Laboratory Credit is granted for to the students who participated in all exercises, passed all control tests and submitted all required reports.
The final grade The final note is an derivaticve of all points/partial notes collected from the module activities and precise rages are communicated before the test. The final note is calculated according to equation: K=a*wA+c*wC+l*wL (a-lecture coeff., c-tutorial coeff., l-laboratory/project coeff., w=1,0, w=0,9, w=0,8 receptively for the 1st, 2nd, 3rd attempt). The note is calculated only if all components have been passed. Values of coefficiants are presented to the students during the initial teaching session.

Sample problems

Required during the exam/when receiving the credit
(-)

Realized during classes/laboratories/projects
(-)

Others
(-)

Can a student use any teaching aids during the exam/when receiving the credit : no

The contents of the module are associated with the research profile yes

1 A. Bocian; A. Łyskowski; B. Marczak Antimicrobial Peptide Databases as the Guiding Resource in New Antimicrobial Agent Identification via Computational Methods 2025
2 A. Bocian; J. Buczkowicz; E. Ciszkowicz; K. Hus; K. Lecka-Szlachta; A. Łyskowski Peptyd antybakteryjny oraz jego zastosowanie 2025
3 A. Bocian; J. Buczkowicz; E. Ciszkowicz; K. Hus; K. Lecka-Szlachta; A. Łyskowski Peptyd antybakteryjny oraz zastosowanie tego peptydu antybakteryjnego 2025
4 E. Ciszkowicz; M. Dżugan; A. Łyskowski; M. Miłek; M. Tomczyk Selected Polyphenols of Polish Poplar Propolis as a Key Component Shaping Its Antibacterial Properties—In Vitro and In Silico Approaches 2025
5 M. Bauer; A. Bocian; J. Buczkowicz; E. Ciszkowicz; K. Hus; W. Kamysz; K. Lecka-Szlachta; A. Łyskowski; A. Miłoś; D. Neubauer; A. Nieczaj; K. Sikora AMPEC4: Naja ashei Venom-Derived Peptide as a Stimulator of Fibroblast Migration with Antibacterial Activity 2025
6 M. Dąbrowska; A. Łyskowski; M. Misiorek; Ż. Szymaszek; M. Twardowska; Ł. Uram; S. Wołowiec Human Embryonic Kidney HEK293 Cells as a Model to Study SMVT-Independent Transport of Biotin and Biotin-Furnished Nanoparticles in Targeted Therapy 2025
7 A. Łyskowski; M. Misiorek; Z. Rauk; Z. Setkowicz; Ż. Szymaszek; M. Twardowska; Ł. Uram; S. Wołowiec The Importance of Biotinylation for the Suitability of Cationic and Neutral Fourth-Generation Polyamidoamine Dendrimers as Targeted Drug Carriers in the Therapy of Glioma and Liver Cancer 2024
8 M. Dżugan; A. Łyskowski; M. Miłek Assessing the Antimicrobial Properties of Honey Protein Components through In Silico Comparative Peptide Composition and Distribution Analysis 2023
9 V. Csitkovits; K. Gruber; C. Kratky; B. Kräutler; A. Łyskowski Structure-Based Demystification of Radical Catalysis by a Coenzyme B12 dependent Enzyme – Crystallographic Study of Glutamate Mutase with Cofactor Homologues 2022
10 J. Buczkowicz; T. Drzazga; G. Fic; M. Jaromin; P. Krajewski; P. Matysik; R. Mazur; P. Milczarski; T. Sikora; M. Szeliga; D. Tyrka; M. Tyrka; E. Witkowski Selekcja genomowa pszenicy ozimej 2021
11 K. Chen; Ł. Jaremko; M. Jaremko; A. Łyskowski Genetic and Molecular Factors Determining Grain Weight in Rice 2021