
Główny cel kształcenia:
Celem kształcenia jest nabycie przez studentów wiedzy i umiejętności w zakresie zaawansowanego programowania wieloosiowych centrów obróbczych CNC wyposażonych w conajmniej 5-osi sterowanych numerycznie.
Ogólne informacje o zajęciach:
Materiały dydaktyczne:
Pliki do pobrania wg wskazań prowadzącego zajęcia
| 1 | SIEMENS | Przygotowanie pracy | Sinumerik 840D/840Di. | - |
| 2 | SIEMENS | Instrukcja programowania. Podstawy. | Sinumerik 840D/840Di. | - |
| 3 | SIEMENS | Basesoftware and operating software. Commissioning Manual. | Sinumerik 840D. | - |
| 4 | SIEMENS | Instrukcja programowania. Cykle. | Sinumerik 840D/840Di. | - |
| 1 | Grzegorz Nikiel | Programowanie obrabiarek CNC na przykładzie układu sterowania Sinumerik 810D/840D | Bielsko-Biała. | 2004 |
| 2 | Jan Szadkowski, Roman Stryczek, Grzegorz Nikiel | Projektowanie Procesów Technologicznych Na Obrabiarki Sterowane Numerycznie. | Bielsko-Biała. | 1995 |
Wymagania formalne:
Rejestracja na semestrze 3
Wymagania wstępne w kategorii Wiedzy:
Znajomość podstaw przygotowania technologii obróbki. Znajomość ogólnej budowy i sterowania maszyn CNC. Znajomość podstaw programowania w kodzie ISO.
Wymagania wstępne w kategorii Umiejętności:
Umiejętność posługiwania się komputerem PC z systemem Windows oraz pracy z literaturą.
Wymagania wstępne w kategorii Kompetencji społecznych:
Umiejętność samodzielnego poszerzania swej wiedzy i doskonalenia
umiejętności zawodowych.
| MEK | Student, który zaliczył zajęcia | Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia | Metody weryfikacji każdego z wymienionych efektów kształcenia | Związki z KEK | Związki z PRK |
|---|---|---|---|---|---|
| MEK01 | Posiada umiejętności w zakresie zaawansowanego programowania metod i funkcji specjalnych na bazie kodu ISO oraz CAM operacji tokarskich i frezarskich w wariantach technologicznych 5-osiowej obróbki pozycjonowanej oraz 5-osiowej obróbki symultanicznej, realizowanych na wieloosiowych centrach CNC. | laboratorium | zaliczenie cz. praktyczna |
K-W04+ K-W06++ K-W07++ K-U06+ K-U10++ K-U13+++ K-U14+++ K-U15+ K-U16+++ |
P7S-UW P7S-WG P7S-WK |
| MEK02 | Posiada umiejętności w zakresie zaawansowanego programowania na bazie kodu ISO operacji tokarskich i frezarskich 3, 4 i 5-osiowych, w tym zabiegów wiercenia i gwintowania, na wieloosiowe centra tokarsko - frezarskie CNC. | laboratorium | zaliczenie cz. praktyczna |
K-W04+ K-W06++ K-W07++ K-U06+ K-U10++ K-U13+++ K-U14+++ K-U15+ K-U16+++ |
P7S-UW P7S-WG P7S-WK |
| Sem. | TK | Treści kształcenia | Realizowane na | MEK |
|---|---|---|---|---|
| 3 | TK01 | L - część 1 | MEK01 | |
| 3 | TK02 | L - część 2 | MEK02 |
| Forma zajęć | Praca przed zajęciami | Udział w zajęciach | Praca po zajęciach |
|---|---|---|---|
| Laboratorium (sem. 3) | Przygotowanie do laboratorium:
10.00 godz./sem. |
Godziny kontaktowe:
30.00 godz./sem. |
|
| Konsultacje (sem. 3) | Udział w konsultacjach:
1.00 godz./sem. |
||
| Zaliczenie (sem. 3) | Przygotowanie do zaliczenia:
10.00 godz./sem. |
Zaliczenie pisemne:
4.00 godz./sem. |
| Forma zajęć | Sposób wystawiania oceny podsumowującej |
|---|---|
| Laboratorium | W celu zaliczenia zajęć laboratoryjnych wymagane jest uzyskanie pozytywnych ocen z dwóch sprawdzianów praktycznych. Sprawdzian nr 1 weryfikuje umiejętności studenta określonych modułowymi efektami kształcenia MEK01, a sprawdzian nr 2 weryfikuje umiejętności studenta określonych modułowymi efektami kształcenia MEK02. Kryteria weryfikacji efektu kształcenia MEK01 i MEK02 - punktacja i ocena: (90% -100%)=5.0 (bardzo dobry), (80% - 89%)=4.5 (plus dobry), (70% - 79%)=4.0 (dobry), (60% - 69%)=3.5 (plus dostateczny), (50% - 59%)=3.0 (dostateczny). Kryteria weryfikacji efektu kształcenia MEK03-MEK06 - punktacja i ocena: (90% -100%)=5.0 (bardzo dobry), (80% - 89%)=4.5 (plus dobry), (70% - 79%)=4.0 (dobry), (60% - 69%)=3.5 (plus dostateczny), (50% - 59%)=3.0 (dostateczny). |
| Ocena końcowa | W celu uzyskania pozytywnej oceny końcowej z modułu kształcenia - wymagane jest uzyskanie pozytywnej oceny z każdego z dwóch sprawdzianów praktycznych. Ocena końcowa z modułu kształcenia jest obliczana jako średnia arytmetyczna z ocen z dwóch sprawdzianów praktycznych. Punktacja i ocena końcowa modułu: (4.6-5.0)=5.0 (bardzo dobry), (4.20-4.59)=4.5 (plus dobry), (3.80-4.19 )=4.0 (dobry), (3.40-3.79)=3.5 (plus dostateczny), (3.00-3.39)=3.0 (dostateczny). |
Wymagane podczas egzaminu/zaliczenia
(-)
Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)
Inne
(-)
Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie
| 1 | D. Bazaliński; P. Biega; T. Bujak; P. Fudali; M. Gdula; J. Inglot; A. Kafara; S. Miechowicz; W. Wojnarowska; S. Wolski | Szablon ortopedyczny i sposób wytwarzania szablonu ortopedycznego | 2025 |
| 2 | K. Ciecieląg; M. Gdula; A. Kawalec; P. Żurek | Modeling and Cutting Mechanics in the Milling of Polymer Matrix Composites | 2025 |
| 3 | M. Gdula | Modeling and analysis of the instantaneous undeformed chip thickness in multi-axis torus milling in the aspect of tool wear | 2025 |
| 4 | M. Gdula; G. Mrówka-Nowotnik; A. Nowotnik | Analysis the surface integrity taking into account the tool wear stage in the multi-axis torus milling of a Ni-based superalloy using the active cutting edge segment change technique and new approach for machining aircraft engine blades | 2025 |
| 5 | M. Gdula; G. Mrówka-Nowotnik; A. Nowotnik | Modeling and comprehensive mechanism analysis of torus milling cutter wear in multi-axis milling of Ni-based superalloy using the active cutting edge segment change technique | 2025 |
| 6 | M. Gdula; J. Józwik; J. Skoczylas | Tool wear and surface topography shaping after TPl multi-axis milling of Ni-based superalloy of the torus milling cutter using the strategy of adaptive change of the active cutting edge segment | 2025 |
| 7 | M. Gdula; P. Żurek | Side Oscillation Milling: Modeling, Analysis, and Compensation of Cutting Forces Through Feed Optimization | 2025 |
| 8 | M. Gdula | Determination and Analysis of Working Diameters and Working Angle of the Torus Cutter Blade in Multi-axis Machining in the Aspect of Tool Wear | 2024 |
| 9 | M. Gdula; A. Kawalec; J. Matuszak | Analysis of the Deburring Efficiency of EN-AW 7075 Aluminum Alloy Parts with Complex Geometric Shapes Considering the Tool Path Strategy During Multi-Axis Brushing | 2024 |
| 10 | M. Gdula; J. Husár; L. Knapčíková; R. Vandžura | Modeling and Measurement of Tool Wear During Angular Positioning of a Round Cutting Insert of a Toroidal Milling Tool for Multi-Axis Milling | 2024 |
| 11 | M. Gdula; G. Mrówka-Nowotnik | Analysis of tool wear, chip and machined surface morphology in multi-axis milling process of Ni-based superalloy using the torus milling cutter | 2023 |
| 12 | M. Chlost; M. Gdula | A New Method of the Positioning and Analysis of the Roughness Deviation in Five-Axis Milling of External Cylindrical Gear | 2022 |
| 13 | J. Burek; M. Gdula | Sposób pięcioosiowej obróbki elementów o zarysie krzywoliniowym, zwłaszcza łopatek turbin | 2021 |
| 14 | G. Budzik; T. Dziubek; M. Gdula; P. Turek | Elaboration of the measuring procedure facilitating precision assessment of the geometry of mandible anatomical model manufactured using additive methods | 2020 |
| 15 | M. Gdula | Empirical Models for Surface Roughness and Topography in 5-Axis Milling Based on Analysis of Lead Angle and Curvature Radius of Sculptured Surfaces | 2020 |