logo PRZ
Karta przedmiotu
logo WYDZ

Podstawy automatyki (C)


Podstawowe informacje o zajęciach

Cykl kształcenia:
2025/2026
Nazwa jednostki prowadzącej studia:
Wydział Budowy Maszyn i Lotnictwa
Nazwa kierunku studiów:
Lotnictwo i kosmonautyka
Obszar kształcenia:
nauki techniczne
Profil studiów:
ogólnoakademicki
Poziom studiów:
pierwszego stopnia
Forma studiów:
stacjonarne
Specjalności na kierunku:
Awionika, Pilotaż, Samoloty, Silniki lotnicze, Zarządzanie ruchem lotniczym
Tytuł otrzymywany po ukończeniu studiów:
inżynier
Nazwa jednostki prowadzącej zajęcia:
Katedra Awioniki i Sterowania
Kod zajęć:
2799
Status zajęć:
obowiązkowy dla specjalności
Układ zajęć w planie studiów:
sem: 5 / W30 C30 L15 / 3 ECTS / Z
Język wykładowy:
polski
Imię i nazwisko koordynatora:
prof. dr hab. inż. Tomasz Rogalski
semestr 5:
dr inż. Dariusz Nowak

Cel kształcenia i wykaz literatury

Główny cel kształcenia:
Celem kształcenia jest poznanie przez studenta podstaw z zakresu automatyki

Ogólne informacje o zajęciach:
Opanowanie wiedzy i praktycznych umiejętności z zasad działania układów automatycznej regulacji

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Z. Domachowski Automatyka i robotyka - podstawy Wydawnictwo Politechniki Gdańskiej. 2003
2 W. Pełczewski Teoria sterowania WNT. 1980
3 M. Żelazny Podstawy automatyki WNT. 1974
4 M.Chłędowski Wykłady z automatyki dla mechaników Oficyna wydawnicza Politechniki Rzeszowskiej. 2003
5 T. Kaczorek, A. Dzieliński, W. Dąbrowski Podstawy teorii sterowania WNT. 2009
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 M. Chłędowski, J. Pieniążek Podstawy automatyki w ćwiczeniach i zadaniach Oficyna Wydawnicza Politechniki Rzeszowskiej. 2004
2 W. Próchnicki, M. Dzida Zbiór zadań z podstaw automatyki Wydawnictwo Politechiki Gdańskiej. 1993
3 - Instrukcje ćwiczeń laboratoryjnych Katedra Awioniki i Sterowania. -

Wymagania wstępne w kategorii wiedzy / umiejętności / kompetencji społecznych

Wymagania formalne:
Aktualny wpis na czwarty semestr studiów na kierunku Lotnictwo i Kosmonautyka

Wymagania wstępne w kategorii Wiedzy:
Student rozumie zagadnienia fizyki na poziomie studenta uczelni technicznej

Wymagania wstępne w kategorii Umiejętności:
Student umie posługiwać się aparatem matematycznym (analiza matematyczna, rozwiązywanie liniowych równań różniczkowych, operacje algebraiczne na macierzach, umie przeanalizować proces techniczny i opi

Wymagania wstępne w kategorii Kompetencji społecznych:
Student potrafi brać udział na zajęciach oraz współpracować w ramach grupy laboratoryjnej

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z PRK
MEK01 Zna i rozumie budowę prostego układu automatycznej regulacji Wykład Kolokwium K-W03+
K-U08+
P6S-UW
P6S-WG
MEK02 Zna podstawy opisu matematycznego podstawowych układów dynamicznych Wykład, Laboratorium, Ćwiczenia obserwacja wykonawstwa K-U06+
P6S-UW
MEK03 Potrafi planować eksperymenty mające na celu badanie właściwości elementów UAR wykład oraz laboratorium egzamin K-U07+++
P6S-UO

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
5 TK01 Podstawowe pojęcia i zadania automatyki.Układy sterowania i automatycznej regulacji. Wprowadzenie do opisu działania elementów i układów automatyki, Charakterystyki opisujące działanie układów automatyki W01-W03, C01-C02, L01-L02 MEK01 MEK02 MEK03
5 TK02 Przekształcenia całkowe. Pojęcie transmitancji operatorowej i widmowej. Wyznaczanie charakterystyk czasowych układów dynamicznych W04-W07, C03-C04, L03-L04 MEK01 MEK02 MEK03
5 TK03 Opis układów automatyki w przestrzeni stanów W08-W11, C05-C06 MEK01 MEK02
5 TK04 Przekształcanie schematów blokowych, analiza funkcjonowania złożonych układów dynamicznych W12-W15, C07-C08 MEK01 MEK02
5 TK05 Charakterystyki częstotliwościowe opisujące działanie układów automatyki W16-W22, C09-10, L05-L10 MEK01 MEK02 MEK03
5 TK06 Podstawowe człony występujące w automatyce W23-W26, C11-12,L11-L12 MEK01 MEK02 MEK03
5 TK07 Stabilność układów automatyki W25-W28,C13-C14,L10-L13 MEK01 MEK02 MEK03
5 TK08 Podstawowe typy regulatorów, dobór regulatora W27-W30, C15, L14-L15 MEK01 MEK02 MEK03

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 5) Przygotowanie do kolokwium: 2.00 godz./sem.
Godziny kontaktowe: 30.00 godz./sem.
Uzupełnienie/studiowanie notatek: 1.00 godz./sem.
Studiowanie zalecanej literatury: 2.00 godz./sem.
Ćwiczenia/Lektorat (sem. 5) Przygotowanie do ćwiczeń: 4.00 godz./sem.
Przygotowanie do kolokwium: 5.00 godz./sem.
Godziny kontaktowe: 15.00 godz./sem.
Dokończenia/studiowanie zadań: 2.00 godz./sem.
Laboratorium (sem. 5) Przygotowanie do laboratorium: 3.00 godz./sem.
Godziny kontaktowe: 15.00 godz./sem.
Dokończenia/wykonanie sprawozdania: 5.00 godz./sem.
Konsultacje (sem. 5)
Zaliczenie (sem. 5) Przygotowanie do zaliczenia: 5.00 godz./sem.
Zaliczenie pisemne: 1.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Kolokwium zaliczeniowe część ustna i pisemna. ocena jest oceną z części pisemnej przy pozytywnym wyniku części ustnej
Ćwiczenia/Lektorat ocena jest ocena wynikającą z ocena aktywności na zajęciach ćwiczeniowych i samodzielności w rozwiązywaniu zadań, sprawdzianów pisemnych oraz sprawdzianu zaliczeniowego.
Laboratorium Ocena przygotowania do zajęć oraz umiejętności analizy uzyskanych wyników
Ocena końcowa Przy pozytywnej ocenie ze wszystkich form zajęć. Średnia ważona ocen uzyskanych na wykładzie, ćwiczeniach oraz laboratorium (kolokwium 40%, ćwiczenia 30%, laboratorium 30%)

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
Automatyka wykład.pdf

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
automatyka lab.pdf

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi tak

1 G. Drupka; T. Rogalski; Ł. Wałek Analysis of changes in European air traffic flow after the 2022 armed conflict in Ukraine 2025
2 G. Drupka; T. Rogalski; Ł. Wałek Wpływ konfliktów zbrojnych w wybranych rejonach świata na obniżenie jakości informacji z systemów nawigacji satelitarnej 2025
3 J. Prusik; T. Rogalski; A. Wal; A. Włoch Układ zabezpieczający dla samolotów z mechanicznym układem sterowania 2025
4 K. Kosacki; P. Kot; T. Rogalski Airmanship - koncepcja nowoczesnego szkolenia lotniczego 2025
5 T. Rogalski; L. Rolka Airmanship – the concept of modern aviation training 2025
6 A. Kozłowska; M. Malczyk; D. Nowak; T. Rogalski Zastosowanie wybranych metod uczenia maszynowego w systemie sterowania lotem 2024
7 E. Chmiel-Szukiewicz; P. Cieciński; M. Drajewicz; J. Pieniążek; T. Rogalski; R. Smusz; M. Szukiewicz Fire Test of an Equipment for Hydrogen Powered Aircraft 2024
8 G. Drupka; T. Rogalski; Ł. Wałek Analiza zmian w ruchu lotniczym na przykładzie wybranych rejonów FIR europejskiej przestrzeni powietrznej po wystąpieniu konfliktu zbrojnego na terytorium Ukrainy 2024
9 G. Drupka; T. Rogalski; Ł. Wałek Metody wyznaczania pozycji bezzałogowego statku powietrznego na pasie w fazie startu 2024
10 M. Dojka; K. Jakubik; T. Rogalski; Ł. Wałek Automatic take-off control system 2023
11 M. Korkosz; S. Noga; T. Rogalski Analysis of the mechanical limitations of the selected high-speed electric motor 2023
12 S. Noga; D. Nowak; T. Rogalski; P. Rzucidło The use of vision system to determine lateral deviation from landing trajectory 2023
13 T. Rogalski Transport lotniczy w obliczu wyzwań XXI wieku 2023
14 D. Kordos; T. Rogalski System elektroniczny przekazywania informacji do statku powietrznego kołującego po płycie lotniskowej oraz sposób sterowania kołowaniem statku powietrznego z wykorzystaniem tego systemu 2022
15 G. Kopecki; D. Kordos; D. Nowak; T. Rogalski The PAPI Lights-Based Vision System for Aircraft Automatic Control during Approach and Landing 2022
16 K. Doerffer; P. Doerffer; P. Dymora; P. Flaszynski; S. Grigg; M. Jurek; D. Kordos; B. Kowal; M. Mazurek; T. Rogalski; R. Śliwa; R. Unnthorsson The Latest Advances in Wireless Communication in Aviation, Wind Turbines and Bridges 2022
17 T. Rogalski; P. Rzucidło; P. Szwed Estimation of Atmospheric Gusts Using Integrated On-Board Systems of a Jet Transport Airplane - Flight Simulations 2022
18 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski Design advancements for an integrated mission management system for small air transport vehicles in the COAST project 2022
19 B. Brukarczyk; P. Kot; D. Nowak; T. Rogalski; P. Rzucidło Fixed Wing Aircraft Automatic Landing with the Use of a Dedicated Ground Sign System 2021
20 G. Dec; A. Majka; T. Rogalski; D. Rzońca; S. Samolej Regular graph-based free route flight planning approach 2021
21 G. Jaromi; T. Kapuściński; D. Kordos; T. Rogalski; P. Rzucidło; P. Szczerba In-Flight Tests of Intruder Detection Vision System 2021
22 J. Beran; V. Di Vito; P. Grzybowski; T. Kabrt; P. Masłowski; M. Montesarchio; T. Rogalski Flight management enabling technologies for single pilot operations in Small Air Transport vehicles in the COAST project 2021
23 K. Maciejowska; S. Noga; T. Rogalski Vibration analysis of an aviation engine turbine shaft shield 2021
24 P. Bąk; T. Rogalski; P. Rzucidło; J. Szura; K. Warzocha Transformative Use of Additive Technology in Design and Manufacture of Hydraulic Actuator for Fly-by-Wire System 2021
25 S. Noga; J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in an Immelmann manoeuvre 2021
26 V. Di Vito; P. Grzybowski; P. Masłowski; T. Rogalski A concept for an Integrated Mission Management System for Small Air Transport vehicles in the COAST project 2021
27 G. Drupka; A. Majka; T. Rogalski Automated flight planning method to facilitate the route planning process in predicted conditions 2020
28 G. Jaromi; D. Kordos; A. Paw; T. Rogalski; P. Rzucidło; P. Szczerba Simulation studies of a vision intruder detection system 2020
29 J. Prusik; T. Rogalski; P. Rzucidło Unmanned aircraft automatic flight control algorithm in a spin maneuver 2020
30 T. Kapuściński; T. Rogalski; P. Rzucidło; P. Szczerba; Z. Szczerba A Vision-Based Method for Determining Aircraft State during Spin Recovery 2020