
Główny cel kształcenia:
Zapoznanie studentów z metodami produkcji "zielonej" energii, ze szczególnym uwzględnieniem roli materiałów inżynierskich - jako materiałów konstrukcyjnych w urządzeniach i instalacjach energetycznych oraz materiałów do generowania i magazynowania energii.
Ogólne informacje o zajęciach:
Przedstawienie treści przewidzianych w ramach realizowanego modułu w formie wykładów oraz zajęć laboratoryjnych, na których studenci mają możliwość prowadzenia eksperymentów w zakresie charakteryzowania materiałów i zjawisk istotnych dla wytwarzania "zielonej" energii.
| 1 | Ashby M.F. | Dobór materiałów w projektowaniu inżynierskim | WNT, Warszawa. | 1998 |
| 2 | Letcher T.M. (ed.) | Future energy - Improved, sustainable and clean options for our planet | Elsevier, Amsterdam. | 2020 |
| 3 | Lichtfouse E., Schwarzbauer J, Robert D. (eds.) | Green materials for energy, products and dpollution | Springer, Dordrecht. | 2013 |
| 4 | Lin M.-F., Hsu W.-D. (eds.) | Green energy materials handbook | CRC Press, Boca Raton. | 2019 |
| 1 | J. Walkowiak-Kulikowska, J. Wolska, H. Koroniak | Polymers application in proton exchange membranes for fuel cells (PEMFCs) | Physical Sciences Reviews. | 2017 |
| 1 | Romański L. | Wodór nośnikiem energii | Wyd. Uniw. Przyrodniczego we Wrocławiu, Wrocław. | 2007 |
Wymagania formalne:
W zajęciach biorą udział wyłącznie studenci zarejestrowani na 2. semestrze studiów stacjonarnych drugiego stopnia na kierunku "Inżynieria materiałowa".
Wymagania wstępne w kategorii Wiedzy:
Wymagana jest wiedza z zakresu podstaw fizyki, chemii, matematyki oraz nauki o materiałach
Wymagania wstępne w kategorii Umiejętności:
Umiejętność samouczenia się ze wskazanych źródeł wiedzy. Zdolność do obserwacji i interpretacji wyników pomiarów. Umiejętność prowadzania eksperymentu zgodnie z wytycznymi zawartymi w instrukcji, a ta
Wymagania wstępne w kategorii Kompetencji społecznych:
Komunikatywność pozwalająca na współpracę z innymi studentami w trakcie zajęć laboratoryjnych. Świadomość wagi podejmowanych zagadnień w aspekcie funkcjonowania współczesnego świata.
| MEK | Student, który zaliczył zajęcia | Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia | Metody weryfikacji każdego z wymienionych efektów kształcenia | Związki z KEK | Związki z PRK |
|---|---|---|---|---|---|
| MEK01 | Potrafi ocenić charakter i stopień oddziaływania procesów technologicznych na środowisko naturalne | wykład | kolokwium |
K-W02+ K-W10+ K-U01+ K-U04+ K-K02+ |
P7S-KO P7S-UU P7S-UW P7S-WG P7S-WK |
| MEK02 | Rozróżnia funkcje materiałów inżynierskich w produkcji "zielonej" energii. | wykład | kolokwium |
K-W02+ K-W10+ K-U01+ K-U04+ |
P7S-UU P7S-UW P7S-WG P7S-WK |
| MEK03 | Umie wymienić i scharakteryzować zjawiska chemiczne i fizyczne umożliwiające produkcję "zielonej" energii | wykład, laboratorium | kolokwium |
K-W02+ K-W04+ K-U01+ K-U04+ |
P7S-UU P7S-UW P7S-WG |
| MEK04 | Zna sposoby magazynowania energii i jej źródeł | wykład, laboratorium | kolokwium |
K-W10+ K-U01+ K-U04+ |
P7S-UU P7S-UW P7S-WG P7S-WK |
| MEK05 | Rozumie i zna metody kształtowania właściwości materiałów konstrukcji urządzeń produkujących energię odnawialną | wykład, laboratorium | kolokwium, referat pisemny |
K-W02+ K-W04+ K-U01+ K-U04+ K-K01+ K-K02+ |
P7S-KK P7S-KO P7S-UU P7S-UW P7S-WG |
| MEK06 | Umie ocenić właściwości materiałów w aspekcie ich przydatności do magazynowania wodoru | laboratorium | kolokwium, raport pisemny |
K-W02+ K-W04+ K-W10+ K-U01+ K-U02+ K-U04+ K-K01+ K-K03+ |
P7S-KK P7S-KR P7S-UO P7S-UU P7S-UW P7S-WG P7S-WK |
| Sem. | TK | Treści kształcenia | Realizowane na | MEK |
|---|---|---|---|---|
| 2 | TK01 | W01, W02 | MEK01 | |
| 2 | TK02 | W03, W04 | MEK01 MEK02 MEK03 MEK05 | |
| 2 | TK03 | W05, W06 | MEK01 MEK02 MEK03 MEK05 | |
| 2 | TK04 | W07, W08 | MEK01 MEK02 MEK03 MEK05 | |
| 2 | TK05 | W0, W10 | MEK01 MEK02 MEK03 MEK04 | |
| 2 | TK06 | W11 | MEK01 MEK02 MEK03 MEK05 | |
| 2 | TK07 | W12 | MEK01 MEK04 | |
| 2 | TK08 | W13, W14 | MEK01 MEK02 MEK03 MEK04 MEK05 | |
| 2 | TK09 | W15 | MEK01 | |
| 2 | TK10 | L01, L02 | MEK03 MEK06 | |
| 2 | TK11 | L03, L04 | MEK03 MEK06 | |
| 2 | TK12 | L05, L06 | MEK03 MEK06 | |
| 2 | TK13 | L07, L08 | MEK03 MEK06 |
| Forma zajęć | Praca przed zajęciami | Udział w zajęciach | Praca po zajęciach |
|---|---|---|---|
| Wykład (sem. 2) | Przygotowanie do kolokwium:
5.00 godz./sem. |
Godziny kontaktowe:
30.00 godz./sem. |
Uzupełnienie/studiowanie notatek:
2.00 godz./sem. Studiowanie zalecanej literatury: 2.00 godz./sem. |
| Ćwiczenia/Lektorat (sem. 2) | Przygotowanie do ćwiczeń:
5.00 godz./sem. Przygotowanie do kolokwium: 5.00 godz./sem. |
Godziny kontaktowe:
15.00 godz./sem. |
Dokończenia/studiowanie zadań:
5.00 godz./sem. |
| Konsultacje (sem. 2) | Przygotowanie do konsultacji:
10.00 godz./sem. |
Udział w konsultacjach:
4.00 godz./sem. |
|
| Zaliczenie (sem. 2) | Przygotowanie do zaliczenia:
5.00 godz./sem. |
Zaliczenie pisemne:
2.00 godz./sem. |
| Forma zajęć | Sposób wystawiania oceny podsumowującej |
|---|---|
| Wykład | Obecność na wykładach, kolokwium zaliczeniowe |
| Ćwiczenia/Lektorat | Uzyskanie oceny pozytywnej wymaga obecności na zajęciach laboratoryjnych i zaliczenia wszystkich sprawozdań. Ocenę końcową stanowi średnia ocen z kolokwiów przewidzianych w semestrze przez prowadzącego zajęcia. |
| Ocena końcowa | Ocenę końcową (OK) stanowi średnia ważona ocen z wykładu (W) i laboratorium (L) - OK = 0,2W + 0,8L |
Wymagane podczas egzaminu/zaliczenia
(-)
Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)
Inne
(-)
Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie
| 1 | B. Adamczyk-Cieślak; P. Bazarnik; M. Drajewicz; J. Kamiński; M. Kopec; W. Nowak; R. Sitek; A. Wadowski; J. Wróbel | Microstructure and corrosion resistance of hafnium-doped aluminide layers deposited on IN 713C nickel alloy using CVD method: experimental and ab initio studies | 2026 |
| 2 | A. Brudny; M. Drajewicz; K. Franczak; M. Góral; B. Juszczyk; A. Kawecki; G. Kiesiewicz; T. Knych; S. Kordaszewski; J. Kulasa; P. Kwaśniewski; A. Mamala; M. Poręba; M. Sadzikowski; E. Sieja-Smaga; B. Smyrak; P. Strzępek; W. Ściężor; M. Śliwka; R. Wycisk | Kosz do nasycalnika | 2025 |
| 3 | A. Brudny; M. Drajewicz; K. Franczak; M. Góral; B. Juszczyk; A. Kawecki; G. Kiesiewicz; T. Knych; S. Kordaszewski; J. Kulasa; P. Kwaśniewski; A. Mamala; M. Poręba; M. Sadzikowski; E. Sieja-Smaga; B. Smyrak; P. Strzępek; W. Ściężor; M. Śliwka; R. Wycisk | Tygiel do odlewania, zwłaszcza ciągłego | 2025 |
| 4 | A. Kloc; M. Motyka; P. Zielińska | Influence of the Creep on Microstructure and Mechanical Properties of SiC/SiC Composites | 2025 |
| 5 | J. Buk; M. Motyka; D. Szeliga | Effect of Temperature Profile Curvature on the Formation of Atypical Inhomogeneity of Dendritic Microstructure Across the Width of a Single Crystal Blade | 2025 |
| 6 | J. Domagała-Dubiel; M. Drajewicz; K. Franczak; W. Głuchowski; M. Góral; A. Gradzik; A. Kawecki; G. Kiesiewicz; T. Knych; S. Kordaszewski; B. Kuca; D. Kuca; M. Kuca; P. Kwaśniewski; M. Łagoda; M. Maleta; A. Mamala; D. Nabel; K. Ochał; R. Pestrak; M. Poręba; Z. Rdzawski; M. Sadzikowski; W. Ściężor | Przyrząd do mocowania elektrod nasadkowych podczas osadzania powłok na ich części roboczej | 2025 |
| 7 | J. Domagała-Dubiel; M. Drajewicz; K. Franczak; W. Głuchowski; M. Góral; A. Gradzik; A. Kawecki; G. Kiesiewicz; T. Knych; S. Kordaszewski; B. Kuca; D. Kuca; M. Kuca; P. Kwaśniewski; M. Łagoda; M. Maleta; A. Mamala; K. Ochał; R. Pestrak; M. Poręba; Z. Rdzawski; M. Sadzikowski; W. Ściężor | Elektroda nasadkowa do zgrzewania oporowego | 2025 |
| 8 | J. Domagała-Dubiel; M. Drajewicz; K. Franczak; W. Głuchowski; M. Góral; A. Kawecki; G. Kiesiewicz; T. Knych; S. Kordaszewski; B. Kuca; D. Kuca; M. Kuca; P. Kwaśniewski; M. Łagoda; M. Maleta; A. Mamala; R. Pestrak; M. Poręba; M. Pytel; Z. Rdzawski; M. Sadzikowski; W. Ściężor | Matryca do kucia bezwypływkowego elektrod nasadkowych, zwłaszcza ze stopu CuCr | 2025 |
| 9 | P. Bałon; B. Kiełbasa; M. Motyka; E. Rejman | Microstructure and Mechanical Properties of 15CDV6 Steel in TIG-Welded Aircraft Truss Structures | 2025 |
| 10 | S. Boncel; K. Cwynar; A. Cyganiuk; M. Dzida; J. Fal; P. Gancarz; E. Korczeniewski; L. Lugo ; M. Marcos; M. Motyka; M. Poręba; S. Ruczka; J. Sobczak; A. Terzyk; A. Truszkiewicz; J. Vallejo ; G. Żyła | High-efficient, manually-shapeable gamma- and X-ray shield – an introduction of paraffin-tungsten microcomposite along with its properties and recycling possibilities | 2025 |
| 11 | E. Chmiel-Szukiewicz; P. Cieciński; M. Drajewicz; J. Pieniążek; T. Rogalski; R. Smusz; M. Szukiewicz | Fire Test of an Equipment for Hydrogen Powered Aircraft | 2024 |
| 12 | I. Dul; K. Krystek; M. Motyka; M. Wierzbińska | Effect of Vacuum Brazing Conditions of Inconel 718 Superalloy Sheets on Microstructure and Mechanical Properties of Joints | 2024 |
| 13 | J. Adamus; M. Motyka; S. Mróz; M. Poręba; A. Stefanik; W. Więckowski; W. Ziaja | The influence of the rolling method on cold forming ability of explosive welded Ti/steel sheets | 2024 |
| 14 | K. Bester; A. Bukowska; W. Bukowski; M. Drajewicz; K. Dychtoń; R. Ostatek; P. Szałański | Sposób wytwarzania salofenowego kompleksu chromu(III) | 2024 |
| 15 | M. Drajewicz; D. Groch; B. Kościelniak; P. Kwolek; W. Nowak | Microstructure and Corrosion Resistance of 7075 Aluminium Alloy Composite Material Obtained from Chips in the High-Energy Ball Milling Process | 2024 |
| 16 | M. Drajewicz; K. Dychtoń; K. Gancarczyk; M. Góral; A. Gradzik; J. Jopek; B. Kościelniak; T. Kubaszek; M. Mokrzycka; M. Poręba; A. Przybyło; M. Pytel | The Influence of Plasma Nitriding Process Conditions on the Microstructure of Coatings Obtained on the Substrate of Selected Tool Steels | 2024 |
| 17 | M. Drajewicz; M. Góral; J. Jopek; B. Kościelniak; T. Kubaszek; K. Ochał | The Structure of Boride Diffusion Coatings Produced on Selected Grades of Structural Steels | 2024 |
| 18 | M. Drajewicz; W. Głuchowski; M. Góral; P. Kwaśniewski; M. Mokrzycka; A. Przybyło | The influence of plasma nitriding on the microstructure of X153CrMoV12 and X165CrV12 steels | 2024 |
| 19 | M. Motyka; R. Ostrowski; M. Szpunar; T. Trzepieciński; W. Ziaja | Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal | 2024 |
| 20 | M. Motyka; R. Ostrowski; M. Szpunar; T. Trzepieciński; W. Ziaja; K. Żaba | Thermo-Mechanical Numerical Simulation of Friction Stir Rotation-Assisted Single Point Incremental Forming of Commercially Pure Titanium Sheets | 2024 |
| 21 | R. Albrecht; K. Gancarczyk; A. Gradzik; A. Kawalec; M. Kawalec; B. Kościelniak; M. Motyka; D. Szeliga; W. Ziaja | The Effect of Re Content on Microstructure and Creep Resistance of Single Crystal Castings Made of Nickel-Based Superalloys | 2024 |
| 22 | R. Buszta; A. Gradzik; B. Kościelniak; K. Krupa; P. Kwolek; M. Motyka; W. Nowak; A. Obłój; T. Tokarski; M. Wojnicki | Wear resistance of hard anodic coatings fabricated on 5005 and 6061 aluminum alloys | 2024 |
| 23 | B. Adamczyk-Cieślak; M. Drajewicz; P. Maj; J. Mizera; R. Sitek; P. Wiśniewski | Impact of an Aluminization Process on the Microstructure and Texture of Samples of Haynes 282 Nickel Alloy Produced Using the Direct Metal Laser Sintering (DMLS) Technique | 2023 |
| 24 | B. Iżowski; M. Motyka; A. Wojtyczka | Numerical Simulation of Low-Pressure Carburizing and Gas Quenching for Pyrowear 53 Steel | 2023 |
| 25 | J. Adamus; M. Dyner; M. Motyka; W. Więckowski | Tribological Aspects of Sheet Titanium Forming | 2023 |
| 26 | J. Adamus; P. Lacki; M. Motyka; W. Więckowski | A New Method of Predicting the Parameters of the Rotational Friction Welding Process Based on the Determination of the Frictional Heat Transfer in Ti Grade 2/AA 5005 Joints | 2023 |
| 27 | K. Bester; A. Bukowska; W. Bukowski; M. Drajewicz; K. Dychtoń; R. Ostatek; P. Szałański | Ligand salphenowy oraz sposób syntezy tego ligandu salphenowego | 2023 |
| 28 | M. Drajewicz; K. Dychtoń; K. Gancarczyk; W. Gluchowski; M. Góral; A. Gradzik; J. Jopek; B. Kościelniak; T. Kubaszek; P. Kwasniewski; M. Mokrzycka; K. Ochał | The Influence of Industrial-Scale Pack-Boroding Process Time on Thickness and Phase Composition of Selected Cold-Work Tool Steels | 2023 |
| 29 | M. Drajewicz; K. Gancarczyk; M. Góral; T. Kubaszek; A. Słyś; D. Szczęch | The influence of HV-APS process parameters on microstructure and erosion resistance of metalloceramic WC-CrC-Ni coatings | 2023 |
| 30 | M. Drajewicz; M. Góral; J. Jopek; B. Kościelniak; M. Mokrzycka; K. Ochał | High Temperature Protective Coatings for Aeroengine Applications | 2023 |
| 31 | M. Drajewicz; M. Góral; W. Graboń; K. Grochalski; T. Kubaszek | The Concept of WC-CrC-Ni Plasma-Sprayed Coating with the Addition of YSZ Nanopowder for Cylinder Liner Applications | 2023 |
| 32 | M. Drajewicz; W. Głuchowski; D. Kołacz; K. Krukowski; M. Łagoda; M. Maleta; Z. Rdzawski | The effect of the rolling process on selected properties of magnesium copper with microadditives | 2023 |
| 33 | P. Cichosz; M. Drajewicz; M. Góral; A. Majka; W. Nowak; J. Sęp; R. Smusz | Design of Newly Developed Burner Rig Operating with Hydrogen Rich Fuel Dedicated for Materials Testing | 2023 |
| 34 | R. Cygan; S. Fuglewicz; M. Gromada; M. Motyka; D. Szeliga; W. Ziaja | Study of Solidification Process of Ni-Based Superalloy Castings Manufactured in Industrial Conditions with the Use of Novel Thermal Insulating Module Technique | 2023 |
| 35 | J. Adamus; M. Dyner; P. Lacki; M. Motyka; W. Więckowski | Numerical and Experimental Analysis of Titanium Sheet Forming for Medical Instrument Parts | 2022 |
| 36 | K. Krystek; K. Krzanowska; M. Motyka; M. Wierzbińska | The Effect of Selected Process Conditions on Microstructure Evolution of the Vacuum Brazed Joints of Hastelloy X Nickel Superalloy Sheets | 2022 |
| 37 | M. Drajewicz; K. Dychtoń; M. Góral; T. Kubaszek; K. Ochał; P. Rokicki; M. Wierzbińska | The microstructure and thermal properties of Yb2SiO5 coating deposited using APS and PS-PVD methods | 2022 |
| 38 | M. Drajewicz; K. Dychtoń; M. Góral; T. Kubaszek; P. Pędrak; M. Wierzbińska | The Influence of Reactive PS-PVD Process Parameters on the Microstructure and Thermal Properties of Yb2Zr2O7 Thermal Barrier Coating | 2022 |
| 39 | M. Drajewicz; K. Dychtoń; W. Gluchowski; M. Góral; A. Gurak; J. Jopek; A. Kawecki; B. Kościelniak; T. Kubaszek; P. Kwasniewski; M. Lagoda; K. Ochał; A. Przybyło; M. Woźniak | The Diffusion Coatings for Industrial Tool Application | 2022 |
| 40 | M. Drajewicz; M. Góral; M. Poręba; M. Pytel; W. Ziaja | Modification of the Cu-ETP copper surface layer with chromium by physical vapor deposition (PvD) and diffusion annealing | 2022 |
| 41 | M. Drajewicz; M. Góral; T. Kubaszek; A. Słyś; P. Zgódka | The influence of selected plasma spraying parameters on microstructure and porosity of molybdenum coating | 2022 |
| 42 | M. Drajewicz; M. Góral; T. Kubaszek; K. Ochał; M. Poręba | Structure and thickness of Y2O3 coatings deposited by plasma spray physical vapour deposition (PS-PvD) method on graphite | 2022 |
| 43 | W. Cmela; M. Drajewicz; M. Góral; T. Kubaszek; P. Pędrak | The Formation of Two-Layer YSZ Ceramic Coatings Produced in Single Step PS-PVD Process | 2022 |
| 44 | A. Baran; M. Drajewicz; A. Dryzner; M. Dubiel; Ł. Florczak; M. Kocój-Toporowska; A. Krząkała; K. Kwolek; P. Kwolek; G. Lach; G. Nawrat; Ł. Nieużyła; K. Raga; J. Sieniawski; A. Sobkowiak; T. Wieczorek | Method of Forming Corrosion Resistant Coating and Related Apparatus | 2021 |
| 45 | B. Chmiela; M. Drajewicz; B. Kościelniak; M. Sozańska; R. Swadźba | Oxidation Behavior of Inconel 740H Nickel Superalloy in Steam Atmosphere at 750 °C | 2021 |
| 46 | M. Drajewicz; D. Dziadosz; M. Góral; B. Kościelniak; T. Kubaszek | The Isothermal Oxidation of MCrAlY Protective Coatings | 2021 |
| 47 | M. Drajewicz; K. Dychtoń; M. Góral; P. Pędrak | Synthesis of Gd2Zr2O7 Coatings Using the Novel Reactive PS-PVD Process | 2021 |
| 48 | M. Drajewicz; K. Gancarczyk; M. Góral; B. Kościelniak; T. Kubaszek; M. Poręba | The Formation of Columnar YSZ Ceramic Layer on Graphite by PS-PVD Method for Metallurgical Applications | 2021 |
| 49 | M. Drajewicz; M. Gajewski; M. Góral; B. Kościelniak; T. Kubaszek | Microstructure and Oxidation Resistance of Thermal Barrier Coatings with Different Ceramic Layer | 2021 |
| 50 | M. Drajewicz; M. Góral; B. Kościelniak; T. Kubaszek; K. Ochał; M. Pytel; P. Wierzba; R. Wojtynek | The Influence of Process Parameters on Structure and Phase Composition of Boride Coatings Obtained on X39CrMo17-1 Stainless Steel | 2021 |
| 51 | M. Drajewicz; M. Góral; M. Kobylarz; T. Kubaszek; M. Pytel | Thermal Barrier Coating Deposited Using the PS-PVD Method on TiAl-Nb-Mo Intermetallic Alloy with Different Types of Bond Coats | 2021 |
| 52 | M. Drajewicz; M. Góral; T. Kubaszek; P. Pędrak; M. Pytel | The Influence of Process Parameters on Structure of YSZ Coating Deposited by Plasma Spraying on AISI 316L Stainless Steel Surface by APS Method and on Ti6Al4V Titanium Alloy Surface by PS-PVD Method | 2021 |
| 53 | M. Drajewicz; M. Góral; T. Kubaszek; Ł. Nieużyła; K. Ochał; M. Pytel; W. Simka | Microstructure of Aluminide Coatings Modified by Pt, Pd, Zr and Hf Formed in Low-Activity CVD Process | 2021 |
| 54 | M. Drajewicz; M. Góral; T. Kubaszek; Ł. Nieużyła; M. Pytel; W. Simka | The new concept of thermal barrier coatings with Pt + Pd/Zr/Hf-modified aluminide bond coat and ceramic layer formed by PS-PVD method | 2021 |
| 55 | M. Motyka | Martensite Formation and Decomposition during Traditional and AM Processing of Two-Phase Titanium Alloys-An Overview | 2021 |
| 56 | M. Motyka | Titanium Alloys and Titanium-Based Matrix Composites | 2021 |
| 57 | P. Borowski; M. Drajewicz; M. Góral; T. Kubaszek | Thermal Barrier Coatings for Molybdenum Produced Using Nanopowders | 2021 |
| 58 | P. Cichosz; M. Drajewicz; M. Góral; B. Kościelniak; T. Kubaszek; M. Pytel; P. Wierzba | The Duplex Coating Formation Using Plasma Nitriding and CrN PVD Deposition on X39CrMo17-1 Stainless Steel | 2021 |
| 59 | A. Baran-Sadleja; M. Motyka; K. Ślemp; W. Ziaja | The effect of plastic deformation on martensite decomposition process in Ti-6Al-4V alloy | 2020 |
| 60 | K. Adrjanowicz; M. Drajewicz; K. Dychtoń; Ł. Kolek; P. Kula; M. Massalska-Arodź; T. Rozwadowski | Molecular dynamics and cold crystallization process in a liquid-crystalline substance with para-, ferro- and antiferro-electric phases as studied by dielectric spectroscopy and scanning calorimetry | 2020 |
| 61 | K. Kubiak; M. Motyka; J. Sieniawski; W. Ziaja | Cyclic creep behaviour of two-phase Ti-6Al-2Mo-2Cr alloy | 2020 |
| 62 | M. Drajewicz; M. Góral; T. Kubaszek; K. Ochał | The influence of deposition technique of aluminide coatings on oxidation resistance of different nickel superalloys | 2020 |
| 63 | P. Lacki; G. Luty; M. Motyka; P. Wieczorek; W. Więckowski | Evaluation of Usefulness of AlCrN Coatings for Increased Life of Tools Used in Friction Stir Welding (FSW) of Sheet Aluminum Alloy | 2020 |
| 64 | R. Cygan; M. Motyka; J. Nawrocki; J. Sieniawski; D. Szeliga; W. Ziaja | Effect of cooling rate on macro- and microstructure of thin-walled nickel superalloy precision castings | 2020 |
| 65 | W. Chromiński ; M. Motyka; W. Nowak; B. Wierzba | Characterization of the Interface Between α and β Titanium Alloys in the Diffusion Couple | 2020 |