
Główny cel kształcenia:
Zapoznanie studentów z budową i zastosowaniem systemów pomiarowych, w tym komputerowych systemów pomiarowych w technice transportu
Ogólne informacje o zajęciach:
Przedmiot obowiązkowy dla studentów 1 sem. wszystkich specjalności na kierunku.
| 1 | Chłędowski M. | Wykłady z automatyki | Oficyna Wydawnicza PRz, Rzeszów. | 2003. |
| 2 | Piotrowski J. | Podstawy miernictwa | Wyd. Naukowo-Techniczne, Warszawa. | 2002. |
| 3 | Taylor J. R. | Taylor J. R.; Wstęp do analizy błędu pomiarowego | Wyd. Naukowe PWN, Warszawa. | 1999. |
| 4 | Marks-Wojciechowska Z., Pacholski K., Kulesza W. | Systemy pomiarowe | Wyd. Politechniki Łódzkiej; Łódź. | 1999. |
| 5 | Szabatin J. | Podtswy teorii sygnałów | WKiŁ, Warszawa. | 1990 |
| 1 | Świsulski D. | Komputerowa technika pomiarowa. Oprogramowanie wirtualnych przyrządów pomiarowych w LabVIEW | Agenda Wydawnicza PAK-u, Warszawa. | 2005 |
| 2 | Praca zbior. pod red. P. Gila | Termodynamika. Pomiary | Oficyna Wydawnicza Politechniki Rzeszowskiej. | 2019 |
| 3 | Praca zbior. pod red. T.R. Fodemskiego | Pomiary cieplne. Cz. I | WNT. | 2000 |
| 1 | - | Czasopisma specjalistyczne | -. | - |
Wymagania formalne:
Rejestracja na 1 semestr studiów na kierunku Inżynieria środków transportu
Wymagania wstępne w kategorii Wiedzy:
Student powinien posiadać podstawową wiedzę w zakresie matematyki, fizyki, elektroniki, podstaw metrologii, technologii informacyjnej
Wymagania wstępne w kategorii Umiejętności:
Umiejętność rozpoznawania i stosowania praw fizyki do analizy systemów metrologicznych i oraz matematyki (statystyka) do analizy wyników pomiarowych; obsługa systemów komputerowych
Wymagania wstępne w kategorii Kompetencji społecznych:
Student rozumie konieczność samokształcenia się i dokształcania.
| MEK | Student, który zaliczył zajęcia | Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia | Metody weryfikacji każdego z wymienionych efektów kształcenia | Związki z KEK | Związki z PRK |
|---|---|---|---|---|---|
| MEK01 | Posiada podstawową wiedzę z zakresu treści przedmiotu oraz rozumie i potrafi wykorzystywać tą wiedzę do budowy i diagnozowania systemów pomiarowych w technice transportowej | wykład, laboratorium | zaliczenie pisemne (test i ew. referat problemowy), aktywność na zajęciach i sprawozdania z laboratorium |
K-W02+ K-W04+ K-U05++ K-K03+ |
P7S-KK P7S-UW P7S-WG |
| Sem. | TK | Treści kształcenia | Realizowane na | MEK |
|---|---|---|---|---|
| 1 | TK01 | W01-W15, L01-L15 | MEK01 |
| Forma zajęć | Praca przed zajęciami | Udział w zajęciach | Praca po zajęciach |
|---|---|---|---|
| Wykład (sem. 1) | Godziny kontaktowe:
15.00 godz./sem. |
Uzupełnienie/studiowanie notatek:
5.00 godz./sem. Studiowanie zalecanej literatury: 3.00 godz./sem. |
|
| Laboratorium (sem. 1) | Przygotowanie do laboratorium:
5.00 godz./sem. |
Godziny kontaktowe:
15.00 godz./sem. |
Dokończenia/wykonanie sprawozdania:
5.00 godz./sem. |
| Konsultacje (sem. 1) | Udział w konsultacjach:
7.00 godz./sem. |
||
| Zaliczenie (sem. 1) | Przygotowanie do zaliczenia:
5.00 godz./sem. |
| Forma zajęć | Sposób wystawiania oceny podsumowującej |
|---|---|
| Wykład | Zasadnicza weryfikacja osiągnięcia modułowego efektu kształcenia MEK01 na podstawie oceny z testu sprawdzającego nabytą wiedzę wg skali procentowej poprawnych odpowiedzi (0%-30%: ndst, 30%-40%: dst, 40-55%: +dst, 55%-70%: db, 70%-85%: +db, 85%-100%: bdb). Dodatkowo możliwość poprawy oceny na podstawie ocen uzyskanych z aktywności w trakcie zajęć wykładowych lub opracowania referatu problemowego. |
| Laboratorium | Ocena z zajęć laboratoryjnych weryfikuje osiągnięcie modułowego efektu kształcenia MEK01 w zakresie określonym programem tych zajęć. Ocenę z zajęć laboratoryjnych ustala się na podstawie ocen cząstkowych z aktywności na zajęciach i wykonanych sprawozdań. |
| Ocena końcowa | Warunkiem zaliczenia modułu jest osiągnięcie wszystkich efektów modułowych i zaliczenie wszystkich form zajęć. Ocena końcowa jest średnią arytmetyczną ocen z weryfikacji osiągnięć modułowych efektów kształcenia MEK01 z części wykładowej i laboratoryjnej zajęć. |
Wymagane podczas egzaminu/zaliczenia
(-)
Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)
Inne
(-)
Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie
| 1 | A. Borawski; J. Hunicz; M. Jakubowski; A. Jaworski; A. Krzemiński; H. Kuszewski; A. Rybak; D. Szpica; P. Woś | Problems of filtration and standardization on parameter conformity of diesel fuels containing decarbonization components and processing impurities | 2025 |
| 2 | B. Ashok; A. Borawski; J. Hunicz; G. Mieczkowski; D. Szpica; P. Woś | Identification of the Parameters of the Szpica–Warakomski Method’s Rectilinear Trend Complementary to the Gaussian Characteristic Area Method in the Functional Evaluation of Gas Injectors | 2025 |
| 3 | B. Jańczuk; A. Jaworski; H. Kuszewski; R. Longwic; J. Lubas; P. Sander; K. Szymczyk; P. Woś; A. Zdziennicka | n-Hexane Influence on Canola Oil Adhesion and Volumetric Properties | 2025 |
| 4 | K. Balawender; A. Borawski; M. Gęca; M. Jakubowski; A. Jaworski; A. Krzemiński; H. Kuszewski; G. Mieczkowski; A. Rybak; D. Szpica; A. Ustrzycki; P. Woś | Comparative Study on the Effects of Diesel Fuel, Hydrotreated Vegetable Oil, and Its Blends with Pyrolytic Oils on Pollutant Emissions and Fuel Consumption of a Diesel Engine Under WLTC Dynamic Test Conditions | 2025 |
| 5 | M. Jakubowski; P. Woś | Inżynieria środków transportu: badania, konstrukcja, bezpieczeństwo: wybrane zagadnienia | 2025 |
| 6 | R. Gałek; P. Gil; M. Korzeniowski; M. Markowicz; J. Wilk | Alternative experimental method in investigations of thermal diffusivity of 3D printing material | 2025 |
| 7 | S. Grosicki; M. Markowicz; M. Tychanicz-Kwiecień | Experimental Investigation of Thermal Conductivity of Selected 3D-Printed Materials | 2025 |
| 8 | A. Borawski; J. Hunicz; G. Mieczkowski; D. Szpica; P. Woś | Numerical Evaluation of the Operation of a Compression-ignition Engine Fueled by Diesel Fuel and Hydrotreated Vegetable Oil | 2024 |
| 9 | A. Jaworski; A. Krzemiński; H. Kuszewski; P. Woś | A comparative study on selected physical properties of diesel–ethanol–dodecanol blends | 2024 |
| 10 | K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lew; P. Woś | Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio | 2024 |
| 11 | M. Gęca; J. Hunicz; M. Mikulski; A. Rybak; D. Szpica; P. Woś | Comparative analysis of waste-derived pyrolytic fuels applied in a contemporary compression ignition engine | 2024 |
| 12 | M. Gęca; J. Hunicz; M. Mikulski; A. Rybak; D. Szpica; P. Woś; L. Yang | Waste plastic pyrolysis oils as diesel fuel blending components: Detailed analysis of combustion and emissions sensitivity to engine control parameters | 2024 |
| 13 | S. Boichenko; H. Kuszewski; V. Ribun; P. Woś | Analysis of Conventional and Nonconventional GTL Technologies: Benefits and Drawbacks | 2024 |
| 14 | A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś | The investigation of auto-ignition properties of 1-butanol–biodiesel blends under various temperatures conditions | 2023 |
| 15 | B. Babiarz; A. Jaworski; H. Kuszewski; V. Mateichyk; M. Mądziel; S. Porada; M. Śmieszek; P. Woś | Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NOX Emissions Reduction in Sustainable Public Transport | 2023 |
| 16 | K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; K. Lew; R. Longwic; P. Wojewoda; P. Woś | Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests | 2023 |
| 17 | S. Boichenko; L. Chelaydyn; A. Jaworski; V. Ribun; S. Viktor; D. Viktoriia; P. Woś; A. Yakovlieva | Effect of Diethyl Ether Addition on the Properties of Gasoline-Ethanol Blends | 2023 |
| 18 | J. Michalski; P. Woś | Gotowość techniczna pojazdów publicznego transportu zbiorowego z napędem elektrycznym BEB oraz zasilanych CNG i ON - ocena metodą studium przypadku | 2022 |
| 19 | K. Balawender; A. Jaworski; P. Woś | Sterowanie wtryskiwaczami wodoru w silniku przepływowym | 2022 |
| 20 | K. Balawender; T. Campisi ; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda; P. Woś | Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle | 2022 |
| 21 | K. Lejda; P. Woś | Transport means engineering: operation, fuels and safety: selected issues | 2022 |
| 22 | M. Markowicz; E. Smyk | Impact of the Soundproofing in the Cavity of the Synthetic Jet Actuator on the Generated Noise | 2022 |
| 23 | M. Markowicz; E. Smyk; M. Szyca | Selection of the cross-section area shape of the ducts used in the shelter ventilation systems – analysis | 2022 |
| 24 | M. Markowicz; E. Smyk; M. Szyca | Volume analysis of cooling systems with synthetic jet actuator | 2022 |
| 25 | R. Gałek; P. Gil; P. Kucharski; M. Markowicz; S. Smoleń; J. Wilk | Experimental Investigations of the LED Lamp with Heat Sink Inside the Synthetic Jet Actuator | 2022 |
| 26 | S. Boichenko; A. Jaworski; І. Matviyi; I. Shkilniuk; O. Tarasiuk; О. Tselishchev; P. Woś | Міжгалузеві проблеми і системні дослідження в паливно-енергетичному секторі | 2022 |
| 27 | T. Campisi; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; P. Woś | The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques | 2022 |
| 28 | M. Jakubowski; P. Woś | Sposób kompensacji luzu zaworowego w silniku spalinowym o zmiennym stopniu sprężania i urządzenie do stosowania tego sposobu | 2021 |
| 29 | M. Jaremcio; A. Jaworski; K. Lejda; M. Mądziel; P. Woś | Charakterystyka wybranych testów jezdnych stosowanych w badaniach emisji zanieczyszczeń w spalinach silnikowych samochodów osobowych | 2021 |
| 30 | M. Markowicz; E. Smyk | Acoustic and Flow Aspects of Synthetic Jet Actuators with Chevron Orifices | 2021 |
| 31 | M. Markowicz; E. Smyk; J. Wilk | Synthetic Jet Actuators with the Same Cross-Sectional Area Orifices-Flow and Acoustic Aspects | 2021 |
| 32 | M. Markowicz; R. Smusz; E. Smyk | Experimental study of the LED lamp | 2021 |
| 33 | T. Campisi; A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś | Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool | 2021 |
| 34 | W. Homik; A. Mazurkow; P. Woś | Application of a Thermo-Hydrodynamic Model of a Viscous Torsional Vibration Damper to Determining Its Operating Temperature in a Steady State | 2021 |
| 35 | J. Lubas; K. Miernik; W. Szczypiński-Sala; P. Woś; E. Zielińska | Experimental Analysis of Tribological Processes in Friction Pairs with Laser Borided Elements Lubricated with Engine Oils | 2020 |
| 36 | J. Michalski; P. Woś | Ocena techniczna i środowiskowa cyklu życia pojazdów konwencjonalnych i elektrycznych-przegląd literatury | 2020 |
| 37 | K. Balawender; A. Jaworski; D. Konieczny; H. Kuszewski; P. Woś | Wykrywanie spalania stukowego w silniku dwupaliwowym | 2020 |
| 38 | K. Balawender; M. Jakubowski; A. Jaworski; P. Szymczuk; A. Ustrzycki; P. Woś | Application of Variable Compression Ratio VCR Technology in Heavy-Duty Diesel Engine | 2020 |
| 39 | K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; P. Woś | The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled by Petrol and LPG | 2020 |
| 40 | K. Balawender; M. Jaremcio; A. Jaworski; A. Krzemiński; H. Kuszewski; K. Lew; M. Mądziel; P. Woś | Realizacja cyklu jezdnego w badaniach emisji zanieczyszczeń na hamowni podwoziowej | 2020 |
| 41 | K. Lejda; P. Woś | Systemy i środki transportu: bezpieczeństwo i materiały eksploatacyjne: wybrane zagadnienia | 2020 |
| 42 | M. Jakubowski; P. Woś | Numerical and Experimental Studies on Combustion Engines and Vehicles | 2020 |
| 43 | M. Markowicz; M. Tychanicz-Kwiecień | Projekt i budowa stanowiska do wyznaczania współczynnika przewodzenia ciepła otulin izolacyjnych | 2020 |