Cykl kształcenia: 2015/2016
Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa
Nazwa kierunku studiów: Mechanika i budowa maszyn
Obszar kształcenia: nauki techniczne
Profil studiów: ogólnoakademicki
Poziom studiów: pierwszego stopnia
Forma studiów: niestacjonarne
Specjalności na kierunku: Alternatywne źródła i przetwarzanie energii, Inżynieria odlewnictwa, Inżynieria spawalnictwa, Komputerowo wspomagane wytwarzanie, Pojazdy samochodowe, Programowanie i automatyzacja obróbki
Tytuł otrzymywany po ukończeniu studiów: inżynier
Nazwa jednostki prowadzącej zajęcia: Katedra Pojazdów Samochodowych i Inżynierii Transportu
Kod zajęć: 6098
Status zajęć: obowiązkowy dla specjalności Pojazdy samochodowe
Układ zajęć w planie studiów: sem: 6 / W21 L15 P9 / 5 ECTS / E
Język wykładowy: polski
Imię i nazwisko koordynatora: dr hab. inż. prof. PRz Hubert Kuszewski
Terminy konsultacji koordynatora: Zgodnie z harmonogramem pracy Katedry.
Główny cel kształcenia: Poznanie budowy i zasady działania podstawowych układów silnika spalinowego. Poznanie podstaw teoretycznych i zrozumienie procesów zachodzących w silnikach. Umiejętność prowadzenia badań podstawowych procesów zachodzących w silnikach spalinowych i analizy oraz interpretacji uzyskanych danych.
Ogólne informacje o zajęciach: Przedmiot obowiązkowy dla studentów szóstego semestru.
Materiały dydaktyczne: Instrukcje do ćwiczeń laboratoryjnych.
1 | Luft S. | Podstawy budowy silników | WKŁ . | 2003 |
2 | Wajand J.A., Wajand J. T. | Tłokowe silniki spalinowe średnio i szybkoobrotowe, WNT , 2000 | WNT. | 2000 |
3 | Rychter T., Teodorczyk A. | Teoria silników tłokowych | WKiŁ Warszawa. | 2006 |
1 | Kuszewski H., Ustrzycki A. | Laboratorium spalinowych napędów środków transportu | Oficyna Wydawnicza Politechniki Rzeszowskiej. | 2011 |
2 | Serdecki W.(red.) | Badania układów silników spalinowych: laboratorium | Wydaw. Politechniki Poznańskiej. | 2000 |
1 | Wajand J.A., Wajand J. T. | Tłokowe silniki spalinowe średnio i szybkoobrotowe | WNT . | 2000 |
2 | Kozaczewski W. | Konstrukcja grupy tłokowo-cylindrowej silników spalinowych | WKiŁ. | 2004 |
Wymagania formalne: Rejestracja na 6 semestr studiów kierunku Mechanika i Budowa Maszyn.
Wymagania wstępne w kategorii Wiedzy: Wymagane są podstawowe wiadomości z zakresu matematyki, fizyki, termodynamiki oraz mechaniki ogólnej.
Wymagania wstępne w kategorii Umiejętności: Umiejętność analizy i pozyskiwania danych z literatury.
Wymagania wstępne w kategorii Kompetencji społecznych: Student rozumie konieczność samokształcenia i dokształcania.
MEK | Student, który zaliczył zajęcia | Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia | Metody weryfikacji każdego z wymienionych efektów kształcenia | Związki z KEK | Związki z OEK |
---|---|---|---|---|---|
01 | Zna zasadę działania tłokowego silnika spalinowego. | wykład | egzamin cz. pisemna |
K_W004+ |
W03+ W07+ |
02 | Zna przebieg procesów zachodzących w silnikach spalinowych - proces napełniania, spalania, wylotu. | wykład, laboratorium | egzamin cz. pisemna, zaliczenie cz. ustna |
K_W004+ K_U001+ |
W03+ W07+ U01+ |
03 | Zna budowę i zasadę działania podstawowych układów funkcjonalnych silnika spalinowego. | wykład, laboratorium | egzamin cz. pisemna, zaliczenie cz. ustna |
K_W004+ K_U001+ |
W03+ W07+ U01+ |
04 | Potrafi wskazać na podstawowe techniki i metody stosowane w pomiarach parametrów operacyjnych silnika spalinowego | laboratorium | zaliczenie cz. ustna |
K_U009+ K_K004+ |
U09+ K03+ |
05 | Potrafi dokonać interpretacji wyników uzyskanych podczas badań hamownianych silnika spalinowego. Potrafi przeprowadzić podstawowe pomiary w zakresie oceny funkcjonowania silnika spalinowego. | wykład, laboratorium | egzamin cz. pisemna, zaliczenie cz. ustna |
K_U009+ K_K004+ |
U09+ K03+ |
06 | Potrafi pracować w zespole w zakresie prowadzenia badań silnikowych, umie wskazać na wady i zalety głównych układów funkcjonalnych silnika, zna zastosowania silników spalinowych w transporcie | wykład, gra dydaktyczna | egzamin cz. pisemna, zaliczenie cz. ustna |
K_K004+ |
K03+ |
Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).
Sem. | TK | Treści kształcenia | Realizowane na | MEK |
---|---|---|---|---|
6 | TK01 | W01-W07 | MEK01 MEK02 MEK03 | |
6 | TK02 | L01-L08 | MEK04 MEK05 MEK06 | |
6 | TK03 | P01-P03 | MEK01 MEK02 MEK03 MEK06 |
Forma zajęć | Praca przed zajęciami | Udział w zajęciach | Praca po zajęciach |
---|---|---|---|
Wykład (sem. 6) | Godziny kontaktowe:
21.00 godz./sem. |
Uzupełnienie/studiowanie notatek:
10.00 godz./sem. Studiowanie zalecanej literatury: 10.00 godz./sem. |
|
Laboratorium (sem. 6) | Przygotowanie do laboratorium:
16.00 godz./sem. |
Godziny kontaktowe:
15.00 godz./sem. |
Dokończenia/wykonanie sprawozdania:
10.00 godz./sem. |
Projekt/Seminarium (sem. 6) | Przygotowanie do zajęć projektowych/seminaryjnych:
3.00 godz./sem. |
Godziny kontaktowe:
9.00 godz./sem.. |
Wykonanie projektu/dokumentacji/raportu:
5.00 godz./sem. |
Konsultacje (sem. 6) | Przygotowanie do konsultacji:
2.00 godz./sem. |
Udział w konsultacjach:
4.00 godz./sem. |
|
Egzamin (sem. 6) | Przygotowanie do egzaminu:
18.00 godz./sem. |
Egzamin pisemny:
2.00 godz./sem. |
Forma zajęć | Sposób wystawiania oceny podsumowującej |
---|---|
Wykład | Na egzaminie pisemnym w formie testu wielokrotnego wyboru złożonego z 24 pytań sprawdzana jest realizacja następujących efektów modułowych: MEK01, MEK02, MEK03. Ocena z egzaminu determinowana jest liczbą uzyskanych punktów. Liczba uzyskanych punktów wraz z odpowiadającymi im ocenami: 0 ÷ 9 brak zaliczenia egzaminu; 10 ÷ 12 dst; 13 ÷ 15 +dst; 16 ÷ 18 db; 19 ÷ 21 +db; 22 ÷ 24 bdb; |
Laboratorium | Sprawozdania i odpowiedzi z części laboratoryjnej weryfikują realizację następujących efektów modułowych: MEK04, MEK05, MEK06. Warunkiem zaliczenia części laboratoryjnej jest poprawne wykonanie wszystkich sprawozdań. Ocenę z części laboratoryjnej stanowi średnia z ocen z odpowiedzi. |
Projekt/Seminarium | Zespołowe zadania projektowe weryfikują realizację następujących efektów modułowych: MEK01, MEK02, MEK03, MEK06. Ocenę z części projektowej stanowi ocena z pisemnego opracowania zadania projektowego. |
Ocena końcowa | Warunkiem zaliczenia modułu jest osiągnięcie wszystkich efektów modułowych i zaliczenie wszystkich form zajęć. Ocenę końcową stanowi ocena z części pisemnej egzaminu (40%), laboratorium (35%) i projektu (25%). Przyjmuje się następujące przeliczenie uzyskanej średniej ważonej na ocenę końcową: 3,00 ÷ 3,34 dst; 3,35 ÷ 3,75 +dst; 3,76 ÷ 4,25 db; 4,26 ÷ 4,64 +db; 4,65 ÷ 5,00 bdb. |
Wymagane podczas egzaminu/zaliczenia
(-)
Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)
Inne
(-)
Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie
1 | A. Jaworski; A. Krzemiński; H. Kuszewski; P. Woś | A comparative study on selected physical properties of diesel–ethanol–dodecanol blends | 2024 |
2 | A. Jaworski; H. Kuszewski | Investigating the Effect of 2-Ethylhexyl Nitrate Cetane Improver (2-EHN) on the Autoignition Characteristics of a 1-Butanol–Diesel Blend | 2024 |
3 | K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski | Performance of a Diesel Engine Fueled by Blends of Diesel Fuel and Synthetic Fuel Derived from Waste Car Tires | 2024 |
4 | K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski | The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer | 2024 |
5 | K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lew; P. Woś | Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio | 2024 |
6 | S. Boichenko; H. Kuszewski; V. Ribun; P. Woś | Analysis of Conventional and Nonconventional GTL Technologies: Benefits and Drawbacks | 2024 |
7 | A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś | The investigation of auto-ignition properties of 1-butanol–biodiesel blends under various temperatures conditions | 2023 |
8 | A. Jaworski; H. Kuszewski; R. Longwic; P. Sander | Assessment of Self-Ignition Properties of Canola Oil–n-Hexane Blends in a Constant Volume Combustion Chamber and Compression Ignition Engine | 2023 |
9 | B. Babiarz; A. Jaworski; H. Kuszewski; V. Mateichyk; M. Mądziel; S. Porada; M. Śmieszek; P. Woś | Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NOX Emissions Reduction in Sustainable Public Transport | 2023 |
10 | K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; K. Lew; R. Longwic; P. Wojewoda; P. Woś | Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests | 2023 |
11 | A. Jaworski; H. Kuszewski; M. Mądziel | Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions | 2022 |
12 | K. Balawender; T. Campisi ; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda; P. Woś | Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle | 2022 |
13 | T. Campisi; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; P. Woś | The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques | 2022 |
14 | A. Jaworski; H. Kuszewski; M. Mądziel | Lubricity of Ethanol-Diesel Fuel Blends-Study with the Four-Ball Machine Method | 2021 |
15 | K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; J. Lubas | Effect of temperature on tribological properties of 1-butanol–diesel fuel blends-Preliminary experimental study using the HFRR method | 2021 |
16 | T. Campisi; A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś | Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool | 2021 |
17 | K. Balawender; A. Jaworski; D. Konieczny; H. Kuszewski; P. Woś | Wykrywanie spalania stukowego w silniku dwupaliwowym | 2020 |
18 | K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lejda; S. Siedlecka; A. Ustrzycki; E. Zielińska | Modeling of Unburned Hydrocarbon Emission in a Di Diesel Engine Using Neural Networks | 2020 |
19 | K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda | Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures | 2020 |
20 | K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; P. Woś | The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled by Petrol and LPG | 2020 |
21 | K. Balawender; M. Jaremcio; A. Jaworski; A. Krzemiński; H. Kuszewski; K. Lew; M. Mądziel; P. Woś | Realizacja cyklu jezdnego w badaniach emisji zanieczyszczeń na hamowni podwoziowej | 2020 |
22 | K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; M. Mądziel; L. Pavliukh; D. Savostin-Kosiak | Assessment of CO2 emissions and energy consumption during stationary test of vehicle with SI engine powered by different fuels | 2020 |
23 | S. Boichenko; H. Kuszewski; K. Lejda; I. Trofimov; A. Yakovlieva | Anti-wear Properties of Jet Fuel with Camelina Oils Bio-Additives | 2020 |
24 | H. Kuszewski | Effect of Injection Pressure and Air–Fuel Ratio on the Self-ignition Properties of 1-butanol–Diesel Fuel Blends: Study Using a Constant-Volume Combustion Chamber | 2019 |
25 | H. Kuszewski | Experimental investigation of the autoignition properties of ethanol-biodiesel fuel blends | 2019 |
26 | H. Kuszewski | Experimental study of the autoignition properties of n-butanol–diesel fuel blends at various ambient gas temperatures | 2019 |
27 | S. Boichenko; H. Kuszewski; K. Lejda; O. Vovk; A. Yakovlieva | Development of alternative jet fuels modified with camelina oil bio-additives | 2019 |