Cykl kształcenia: 2015/2016
Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa
Nazwa kierunku studiów: Mechanika i budowa maszyn
Obszar kształcenia: nauki techniczne
Profil studiów: ogólnoakademicki
Poziom studiów: pierwszego stopnia
Forma studiów: niestacjonarne
Specjalności na kierunku: Alternatywne źródła i przetwarzanie energii, Inżynieria odlewnictwa, Inżynieria spawalnictwa, Komputerowo wspomagane wytwarzanie, Pojazdy samochodowe, Programowanie i automatyzacja obróbki
Tytuł otrzymywany po ukończeniu studiów: inżynier
Nazwa jednostki prowadzącej zajęcia: Katedra Pojazdów Samochodowych i Inżynierii Transportu
Kod zajęć: 6059
Status zajęć: obowiązkowy dla programu
Układ zajęć w planie studiów: sem: 4 / W20 L10 / 3 ECTS / Z
Język wykładowy: polski
Imię i nazwisko koordynatora: dr inż. Krzysztof Balawender
Terminy konsultacji koordynatora: https://kbalawen.v.prz.edu.pl/konsultacje
semestr 4: dr inż. Mirosław Jakubowski
Główny cel kształcenia: Zapoznanie się z podstawowymi prawami obowiązującymi w elektrotechnice i elektronice, elementami obwódów elektrycznych i elektronicznych, metodami pomiarowymi oraz podstawowymi maszynami elektrycznymi.
Ogólne informacje o zajęciach: Moduł kształcenia obejmuje podstawowe zgadnienia z zakresu elektrotechniki i elektroniki
Materiały dydaktyczne: Materiały pomocnicze ze stron domowych prowadzących
1 | Paweł Hempowicz [i in.] | Elektrotechnika i elektronika dla nieelektryków | Wydaw.WNT, Warszawa . | 2015 |
2 | Zdzisław Gientkowski | Wstęp do elektrotechniki | Wydaw.Uczel.Uniwersytetu Technologiczno-Przyrodniczego, Bydgoszcz. | 2013 |
3 | Wacław Matulewicz | Elektrotechnika dla mechaników | Wydaw.Politech.Gdańsk., Gdańsk 2010. | 2010 |
4 | Paul Horowitz, Winfield Hill. | Sztuka elektroniki Cz. 1 i 2 | WKiŁ, Warszawa. | 2013 |
5 | Charles Platt | Elektronika : od praktyki do teorii | Helion, Gliwice. | 2013 |
6 | Jacek Przepiórkowski | Silniki elektryczne w praktyce elektronika | Legionowo : Wydaw.BTC, Legionowo. | 2012 |
7 | Bernard Ziętek | Optoelektronika | Wydaw.Uniw.Mikołaja Kopernika, Toruń. | 2011 |
8 | Józef Kalisz | Podstawy elektroniki cyfrowej | WKiŁ, Warszawa. | 2007 |
9 | Robert Wołgajew | Mikrokontrolery AVR dla początkujących : przykłady w języku Bascom | Wydaw.BTC, Legionowo. | 2010 |
1 | Krystyna Bula | Elektrotechnika dla nieelektryków : laboratorium | Ofic.Wydaw.Politech.Rzesz., Rzeszów. | 2014 |
2 | red. Włodzimierz Kalita | Podstawy elektroniki : laboratorium : praca zbiorowa | Wydaw.Politech.Rzesz., Rzeszów. | 1983 |
1 | Bruce Carter, Ron Mancini | Wzmacniacze operacyjne : teoria i praktyka | Wydaw.BTC, Legionowo. | 2011 |
2 | Helmut Lindner | Zbiór zadań z elektrotechniki T.1 Prąd stały - obwody | Centralny Ośrodek Szkolenia i Wydawnictw SEP, Warszawa. | 2004 |
Wymagania formalne: rejestracja na semestr czwarty
Wymagania wstępne w kategorii Wiedzy: Student posiada podstawową wiedzę w zakresie: algebry, teorii równań różniczkowych i liczb zespolonych oraz pola elektrycznego i magnetycznego, prądu stałego i przemennego
Wymagania wstępne w kategorii Umiejętności: Student potrafi rozwiązywać układy równań liniowych, zna własności fukcji sinusoidalnej, zna działania na liczbach zespolonych
Wymagania wstępne w kategorii Kompetencji społecznych: Student wykazuje się interakcją w kontaktach interpersonalnych
MEK | Student, który zaliczył zajęcia | Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia | Metody weryfikacji każdego z wymienionych efektów kształcenia | Związki z KEK | Związki z OEK |
---|---|---|---|---|---|
01 | Student zna podstawowe prawa obwodów prądu stałego. Student potrafi zastosować prawa do opisu obwodów elektrycznych. Student zna warunki powstawania pola magnetycznego. Student zna własności napięć i prądów sinusoidalnie zmiennych, rodzaje mocy. Student zna rodzaje odbiorników elektrycznych. Student potrafi zmierzyć podstawowe wielkości elektryczne. | wykład, laboratorium | kolokwium lub zaliczenie cz. ustna, obserwacja wykonawstwa, raport pisemny |
K_W004++ K_U006+ K_U008+ K_K004+ |
W02+ W07+ U05+ U08+ K03+ |
02 | Student zna rodzaje odbiorników elektrycznych. Student zna podstawowe typy maszyn i rodzaje pracy. Student zna podstawy tworzenia wykresów wskazowych. | wykład, laboratorium | kolokwium lub zaliczenie cz. ustna, obserwacja wykonawstwa, raport pisemny |
K_W004++ K_U006+ K_U008+ K_K004+ |
W02+ W07+ U05+ U08+ K03+ |
03 | Student zna elementy półprzewodnikowe (diody, tranzystory, tyrystory). Student zna właściwości złącza p-n. Student potrafi wyznaczyć podstawowe charakterystyki diody i tranzystora bipolarnego. Student zna podstawowe właściwości wzmacniaczy. | wykład, laboratorium | kolokwium lub zaliczenie cz. ustna, obserwacja wykonawstwa, raport pisemny |
K_W004++ K_U006+ K_U008+ K_K004+ |
W02+ W07+ U05+ U08+ K03+ |
04 | Student zna podstawowe układy logiczne. Student potrafi zbudować prosty obwód elektroniczny z użyciem elementów logicznych. Student zna elementy optoelektroniczne i potrafi wyznaczyć ich podstawowe charakterystyki. Student zna podstawy tworzenia schematów ideowych urządzeń elektrycznych i elektronicznych. Student zna podstawy budowy i programowania mikrokontrolerów. | wykład, laboratorium | kolokwium lub zaliczenie cz. ustna, obserwacja wykonawstwa, raport pisemny |
K_W004+ K_U006+ K_U008+ K_K004+ |
W02+ W07+ U05+ U08+ K03+ |
Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).
Sem. | TK | Treści kształcenia | Realizowane na | MEK |
---|---|---|---|---|
4 | TK01 | W01, W02, L01 | MEK01 | |
4 | TK02 | W03, L02 | MEK01 | |
4 | TK03 | W04, L02 | MEK01 MEK02 | |
4 | TK04 | W05, L02 | MEK01 | |
4 | TK05 | W05, L01, L02 | MEK01 MEK02 | |
4 | TK06 | W06, L02 | MEK02 | |
4 | TK07 | W07, L03 | MEK03 | |
4 | TK08 | W08, L04, L05 | MEK03 MEK04 | |
4 | TK09 | W09, L06 | MEK04 | |
4 | TK10 | W10, L06 | MEK04 |
Forma zajęć | Praca przed zajęciami | Udział w zajęciach | Praca po zajęciach |
---|---|---|---|
Wykład (sem. 4) | Godziny kontaktowe:
20.00 godz./sem. |
Uzupełnienie/studiowanie notatek:
5.00 godz./sem. Studiowanie zalecanej literatury: 12.00 godz./sem. |
|
Laboratorium (sem. 4) | Przygotowanie do laboratorium:
10.00 godz./sem. |
Godziny kontaktowe:
10.00 godz./sem. |
Dokończenia/wykonanie sprawozdania:
6.00 godz./sem. |
Konsultacje (sem. 4) | Przygotowanie do konsultacji:
2.00 godz./sem. |
Udział w konsultacjach:
6.00 godz./sem. |
|
Zaliczenie (sem. 4) | Przygotowanie do zaliczenia:
10.00 godz./sem. |
Zaliczenie ustne:
3.00 godz./sem. |
Forma zajęć | Sposób wystawiania oceny podsumowującej |
---|---|
Wykład | zaliczenie ustne lub pisemne łącznie z laboratorium, obecność na wykładzie |
Laboratorium | odrobienie wszystkich ćwiczeń, obserwacja pracy studenta podczas zajęć, oddanie raportów pisemnych z ćwiczeń, zaliczenie ustne lub pisemne |
Ocena końcowa | pozytywne oceny z laboratorium z uwzględnieniem dodatkowych preferencji (obecnośc na wykładzie, aktywność na zajęciach laboratoryjnych) |
Wymagane podczas egzaminu/zaliczenia
(-)
Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)
Inne
(-)
Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie
1 | K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski | Performance of a Diesel Engine Fueled by Blends of Diesel Fuel and Synthetic Fuel Derived from Waste Car Tires | 2024 |
2 | K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski | The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer | 2024 |
3 | K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lew; P. Woś | Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio | 2024 |
4 | K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; K. Lew; R. Longwic; P. Wojewoda; P. Woś | Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests | 2023 |
5 | K. Balawender; A. Jaworski; P. Woś | Sterowanie wtryskiwaczami wodoru w silniku przepływowym | 2022 |
6 | K. Balawender; T. Campisi ; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda; P. Woś | Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle | 2022 |
7 | K. Balawender; A. Jaworski; K. Lejda; M. Mądziel; D. Savostin-Kosiak; A. Ustrzycki | Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests | 2021 |
8 | K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; J. Lubas | Effect of temperature on tribological properties of 1-butanol–diesel fuel blends-Preliminary experimental study using the HFRR method | 2021 |
9 | K. Balawender; A. Jaworski; D. Konieczny; H. Kuszewski; P. Woś | Wykrywanie spalania stukowego w silniku dwupaliwowym | 2020 |
10 | K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lejda; S. Siedlecka; A. Ustrzycki; E. Zielińska | Modeling of Unburned Hydrocarbon Emission in a Di Diesel Engine Using Neural Networks | 2020 |
11 | K. Balawender; M. Jakubowski; A. Jaworski; P. Szymczuk; A. Ustrzycki; P. Woś | Application of Variable Compression Ratio VCR Technology in Heavy-Duty Diesel Engine | 2020 |
12 | K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda | Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures | 2020 |
13 | K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; P. Woś | The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled by Petrol and LPG | 2020 |
14 | K. Balawender; M. Jaremcio; A. Jaworski; A. Krzemiński; H. Kuszewski; K. Lew; M. Mądziel; P. Woś | Realizacja cyklu jezdnego w badaniach emisji zanieczyszczeń na hamowni podwoziowej | 2020 |
15 | K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; M. Mądziel; L. Pavliukh; D. Savostin-Kosiak | Assessment of CO2 emissions and energy consumption during stationary test of vehicle with SI engine powered by different fuels | 2020 |
16 | K. Balawender | Prototypowe układy sterowania stosowane podczas badań silników spalinowych i ich elementów | 2019 |
17 | K. Balawender; A. Jaworski | Wpływ dodatku gazu HHO na wybrane parametry eksploatacyjne silnika o zi o małej pojemności | 2019 |
18 | K. Balawender; D. Konieczny; A. Krzemiński; K. Lew; P. Wojewoda | Automated vehicles as the future of road transport | 2019 |