logo PRZ
Karta przedmiotu
logo WYDZ

Podstawy elektrotechniki i elektroniki


Podstawowe informacje o zajęciach

Cykl kształcenia:
2015/2016
Nazwa jednostki prowadzącej studia:
Wydział Budowy Maszyn i Lotnictwa
Nazwa kierunku studiów:
Mechanika i budowa maszyn
Obszar kształcenia:
nauki techniczne
Profil studiów:
ogólnoakademicki
Poziom studiów:
pierwszego stopnia
Forma studiów:
niestacjonarne
Specjalności na kierunku:
Alternatywne źródła i przetwarzanie energii, Inżynieria odlewnictwa, Inżynieria spawalnictwa, Komputerowo wspomagane wytwarzanie, Pojazdy samochodowe, Programowanie i automatyzacja obróbki
Tytuł otrzymywany po ukończeniu studiów:
inżynier
Nazwa jednostki prowadzącej zajęcia:
Katedra Pojazdów Samochodowych i Inżynierii Transportu
Kod zajęć:
6059
Status zajęć:
obowiązkowy dla programu
Układ zajęć w planie studiów:
sem: 4 / W20 L10 / 3 ECTS / Z
Język wykładowy:
polski
Imię i nazwisko koordynatora:
dr inż. Krzysztof Balawender
Terminy konsultacji koordynatora:
https://kbalawen.v.prz.edu.pl/konsultacje
semestr 4:
dr inż. Mirosław Jakubowski

Cel kształcenia i wykaz literatury

Główny cel kształcenia:
Zapoznanie się z podstawowymi prawami obowiązującymi w elektrotechnice i elektronice, elementami obwódów elektrycznych i elektronicznych, metodami pomiarowymi oraz podstawowymi maszynami elektrycznymi.

Ogólne informacje o zajęciach:
Moduł kształcenia obejmuje podstawowe zgadnienia z zakresu elektrotechniki i elektroniki

Materiały dydaktyczne:
Materiały pomocnicze ze stron domowych prowadzących

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Paweł Hempowicz [i in.] Elektrotechnika i elektronika dla nieelektryków Wydaw.WNT, Warszawa . 2015
2 Zdzisław Gientkowski Wstęp do elektrotechniki Wydaw.Uczel.Uniwersytetu Technologiczno-Przyrodniczego, Bydgoszcz. 2013
3 Wacław Matulewicz Elektrotechnika dla mechaników Wydaw.Politech.Gdańsk., Gdańsk 2010. 2010
4 Paul Horowitz, Winfield Hill. Sztuka elektroniki Cz. 1 i 2 WKiŁ, Warszawa. 2013
5 Charles Platt Elektronika : od praktyki do teorii Helion, Gliwice. 2013
6 Jacek Przepiórkowski Silniki elektryczne w praktyce elektronika Legionowo : Wydaw.BTC, Legionowo. 2012
7 Bernard Ziętek Optoelektronika Wydaw.Uniw.Mikołaja Kopernika, Toruń. 2011
8 Józef Kalisz Podstawy elektroniki cyfrowej WKiŁ, Warszawa. 2007
9 Robert Wołgajew Mikrokontrolery AVR dla początkujących : przykłady w języku Bascom Wydaw.BTC, Legionowo. 2010
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 Krystyna Bula Elektrotechnika dla nieelektryków : laboratorium Ofic.Wydaw.Politech.Rzesz., Rzeszów. 2014
2 red. Włodzimierz Kalita Podstawy elektroniki : laboratorium : praca zbiorowa Wydaw.Politech.Rzesz., Rzeszów. 1983
Literatura do samodzielnego studiowania
1 Bruce Carter, Ron Mancini Wzmacniacze operacyjne : teoria i praktyka Wydaw.BTC, Legionowo. 2011
2 Helmut Lindner Zbiór zadań z elektrotechniki T.1 Prąd stały - obwody Centralny Ośrodek Szkolenia i Wydawnictw SEP, Warszawa. 2004

Wymagania wstępne w kategorii wiedzy / umiejętności / kompetencji społecznych

Wymagania formalne:
rejestracja na semestr czwarty

Wymagania wstępne w kategorii Wiedzy:
Student posiada podstawową wiedzę w zakresie: algebry, teorii równań różniczkowych i liczb zespolonych oraz pola elektrycznego i magnetycznego, prądu stałego i przemennego

Wymagania wstępne w kategorii Umiejętności:
Student potrafi rozwiązywać układy równań liniowych, zna własności fukcji sinusoidalnej, zna działania na liczbach zespolonych

Wymagania wstępne w kategorii Kompetencji społecznych:
Student wykazuje się interakcją w kontaktach interpersonalnych

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z OEK
MEK01 Student zna podstawowe prawa obwodów prądu stałego. Student potrafi zastosować prawa do opisu obwodów elektrycznych. Student zna warunki powstawania pola magnetycznego. Student zna własności napięć i prądów sinusoidalnie zmiennych, rodzaje mocy. Student zna rodzaje odbiorników elektrycznych. Student potrafi zmierzyć podstawowe wielkości elektryczne. wykład, laboratorium kolokwium lub zaliczenie cz. ustna, obserwacja wykonawstwa, raport pisemny K-W004++
K-U006+
K-U008+
K-K004+
W02+
W07+
U05+
U08+
K03+
MEK02 Student zna rodzaje odbiorników elektrycznych. Student zna podstawowe typy maszyn i rodzaje pracy. Student zna podstawy tworzenia wykresów wskazowych. wykład, laboratorium kolokwium lub zaliczenie cz. ustna, obserwacja wykonawstwa, raport pisemny K-W004++
K-U006+
K-U008+
K-K004+
W02+
W07+
U05+
U08+
K03+
MEK03 Student zna elementy półprzewodnikowe (diody, tranzystory, tyrystory). Student zna właściwości złącza p-n. Student potrafi wyznaczyć podstawowe charakterystyki diody i tranzystora bipolarnego. Student zna podstawowe właściwości wzmacniaczy. wykład, laboratorium kolokwium lub zaliczenie cz. ustna, obserwacja wykonawstwa, raport pisemny K-W004++
K-U006+
K-U008+
K-K004+
W02+
W07+
U05+
U08+
K03+
MEK04 Student zna podstawowe układy logiczne. Student potrafi zbudować prosty obwód elektroniczny z użyciem elementów logicznych. Student zna elementy optoelektroniczne i potrafi wyznaczyć ich podstawowe charakterystyki. Student zna podstawy tworzenia schematów ideowych urządzeń elektrycznych i elektronicznych. Student zna podstawy budowy i programowania mikrokontrolerów. wykład, laboratorium kolokwium lub zaliczenie cz. ustna, obserwacja wykonawstwa, raport pisemny K-W004+
K-U006+
K-U008+
K-K004+
W02+
W07+
U05+
U08+
K03+

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
4 TK01 Podstawowe pojęcia elektrotechniki. Ładunek, prąd elektryczny. Pole elektrostatyczne, napięcie elektryczne, kondensatory. Obwód elektryczny - elementy,rodzaje. Strzałkowanie napięcia i prądu. Prawo Ohma i prawa Kirchhoffa. Moc i praca prądu elektrycznego. Źródła energii elektrycznej - rodzaje, charakterystyki prądowo-napięciowe. Sposoby łączenia rezystorów i żródeł w obwodach. Metody rozwiązywania liniowych obwodów rozgałęzionych prądu stałego - przykłady. W01, W02, L01 MEK01
4 TK02 Pole magnetyczne - wielkości pola. Prawa obwodów magnetycznych. Indukcja elektromagnetyczna - zjawisko indukcji, indukcyjność własna i wzajemna. W03, L02 MEK01
4 TK03 Klasyfikacja przebiegów zmiennych. Wytwarzanie napięcia sinusoidalnie zmiennego. Wartość chwilowa, średnia i skuteczna przebiegów sinusoidalnych. Elementy R-L-C w obwodzie pradu przemiennego. Wykresy wskazowe prądów i napięć. Zastosowanie liczb zespolonych do opisu wielkości sinusoidalnie zmiennych. Moc w obwodzie prądu sinusoidalnego. Przykłady rozgałęzionych obwodów prądu przemiennego i ich opis. W04, L02 MEK01 MEK02
4 TK04 Układy trójfazowe prądu przemiennego, podstawowe pojęcia. Moc w układach trójfazowych. Zastosowanie układów trójfazowych. W05, L02 MEK01
4 TK05 Podstawy metrologii elektrycznej - elektryczne przyrządy pomiarowe, elektryczne metody pomiarowe wielkości elektrycznych i nieelektrycznych. W05, L01, L02 MEK01 MEK02
4 TK06 Maszyny elektryczne - wiadomości ogólne, podział, rodzaje pracy. Transformatory - budowa, zasada działania, rodzaje, zastosowanie. Silniki indukcyjne - jedno- i trójfazowe: budowa, zasada działania, podstawowe własności ruchowe, zastosowanie. Maszyny prądu stałego - rodzaje, budowa, zasada działania. W06, L02 MEK02
4 TK07 Bezzłączowe elementy półprzewodnikowe. Złącze p-n. Diody półprzewodnikowe. W07, L03 MEK03
4 TK08 Tranzystor - rodzaje, właściwości, zastosowania. Tyrystor - rodzaje, właściwości, zastosowania. Wzmacniacze. Elementy optoelektroniczne. W08, L04, L05 MEK03 MEK04
4 TK09 Bramki logiczne oraz wykorzystanie bramek logicznych w projektowaniu prostych układów cyfrowych. W09, L06 MEK04
4 TK10 Wprowadzenie do techniki mikroprocesorowej. Podstawy tworzenia schematów ideowych i płytek drukowanych. W10, L06 MEK04

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 4) Godziny kontaktowe: 20.00 godz./sem.
Uzupełnienie/studiowanie notatek: 5.00 godz./sem.
Studiowanie zalecanej literatury: 12.00 godz./sem.
Laboratorium (sem. 4) Przygotowanie do laboratorium: 10.00 godz./sem.
Godziny kontaktowe: 10.00 godz./sem.
Dokończenia/wykonanie sprawozdania: 6.00 godz./sem.
Konsultacje (sem. 4) Przygotowanie do konsultacji: 2.00 godz./sem.
Udział w konsultacjach: 6.00 godz./sem.
Zaliczenie (sem. 4) Przygotowanie do zaliczenia: 10.00 godz./sem.
Zaliczenie ustne: 3.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład zaliczenie ustne lub pisemne łącznie z laboratorium, obecność na wykładzie
Laboratorium odrobienie wszystkich ćwiczeń, obserwacja pracy studenta podczas zajęć, oddanie raportów pisemnych z ćwiczeń, zaliczenie ustne lub pisemne
Ocena końcowa

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski Effect of Selected Optical Navigation Methods on the Energy Consumption of Automated Guided Vehicles 2025
2 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski Performance of a Diesel Engine Fueled by Blends of Diesel Fuel and Synthetic Fuel Derived from Waste Car Tires 2024
3 K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer 2024
4 K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lew; P. Woś Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio 2024
5 K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; K. Lew; R. Longwic; P. Wojewoda; P. Woś Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests 2023
6 K. Balawender; A. Jaworski; P. Woś Sterowanie wtryskiwaczami wodoru w silniku przepływowym 2022
7 K. Balawender; T. Campisi ; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda; P. Woś Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle 2022
8 K. Balawender; A. Jaworski; K. Lejda; M. Mądziel; D. Savostin-Kosiak; A. Ustrzycki Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests 2021
9 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; J. Lubas Effect of temperature on tribological properties of 1-butanol–diesel fuel blends-Preliminary experimental study using the HFRR method 2021
10 K. Balawender; A. Jaworski; D. Konieczny; H. Kuszewski; P. Woś Wykrywanie spalania stukowego w silniku dwupaliwowym 2020
11 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lejda; S. Siedlecka; A. Ustrzycki; E. Zielińska Modeling of Unburned Hydrocarbon Emission in a Di Diesel Engine Using Neural Networks 2020
12 K. Balawender; M. Jakubowski; A. Jaworski; P. Szymczuk; A. Ustrzycki; P. Woś Application of Variable Compression Ratio VCR Technology in Heavy-Duty Diesel Engine 2020
13 K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures 2020
14 K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; P. Woś The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled by Petrol and LPG 2020
15 K. Balawender; M. Jaremcio; A. Jaworski; A. Krzemiński; H. Kuszewski; K. Lew; M. Mądziel; P. Woś Realizacja cyklu jezdnego w badaniach emisji zanieczyszczeń na hamowni podwoziowej 2020
16 K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; M. Mądziel; L. Pavliukh; D. Savostin-Kosiak Assessment of CO2 emissions and energy consumption during stationary test of vehicle with SI engine powered by different fuels 2020