logo
Karta przedmiotu
logo

Silniki spalinowe

Podstawowe informacje o zajęciach

Cykl kształcenia: 2015/2016

Nazwa jednostki prowadzącej studia: Wydział Budowy Maszyn i Lotnictwa

Nazwa kierunku studiów: Transport

Obszar kształcenia: nauki techniczne

Profil studiów: ogólnoakademicki

Poziom studiów: pierwszego stopnia

Forma studiów: niestacjonarne

Specjalności na kierunku: Diagnostyka i eksploatacja pojazdów samochodowych, Logistyka transportu samochodowego, Transport przemysłowy

Tytuł otrzymywany po ukończeniu studiów: inżynier

Nazwa jednostki prowadzącej zajęcia: Katedra Pojazdów Samochodowych i Inżynierii Transportu

Kod zajęć: 2034

Status zajęć: obowiązkowy dla programu

Układ zajęć w planie studiów: sem: 5 / W18 L18 / 5 ECTS / E

Język wykładowy: polski

Imię i nazwisko koordynatora: dr hab. inż. prof. PRz Hubert Kuszewski

Terminy konsultacji koordynatora: Zgodnie z harmonogramem pracy Katedry.

semestr 5: dr inż. Adam Ustrzycki

Cel kształcenia i wykaz literatury

Główny cel kształcenia: Poznanie budowy i zasady działania podstawowych układów silnika spalinowego. Poznanie podstaw teoretycznych i zrozumienie procesów zachodzących w silnikach. Umiejętność prowadzenia badań podstawowych procesów zachodzących w silnikach spalinowych i analizy oraz interpretacji uzyskanych danych.

Ogólne informacje o zajęciach: Przedmiot obowiązkowy dla studentów czwartego semestru.

Materiały dydaktyczne: Instrukcje do ćwiczeń laboratoryjnych.

Wykaz literatury, wymaganej do zaliczenia zajęć
Literatura wykorzystywana podczas zajęć wykładowych
1 Luft S. Podstawy budowy silników WKŁ . 2003
2 Wajand J.A., Wajand J. T. Tłokowe silniki spalinowe średnio i szybkoobrotowe, WNT , 2000 WNT. 2000
3 Rychter T., Teodorczyk A. Teoria silników tłokowych WKiŁ Warszawa. 2006
Literatura wykorzystywana podczas zajęć ćwiczeniowych/laboratoryjnych/innych
1 Kuszewski H., Ustrzycki A. Laboratorium spalinowych napędów środków transportu Oficyna Wydawnicza Politechniki Rzeszowskiej. 2011
2 Serdecki W.(red.) Badania układów silników spalinowych: laboratorium Wydaw. Politechniki Poznańskiej. 2000
Literatura do samodzielnego studiowania
1 Wajand J.A., Wajand J. T. Tłokowe silniki spalinowe średnio i szybkoobrotowe WNT . 2000
2 Kozaczewski W. Konstrukcja grupy tłokowo-cylindrowej silników spalinowych WKiŁ. 2004

Wymagania wstępne w kategorii wiedzy/umiejętności/kompetencji społecznych

Wymagania formalne: Rejestracja na 4 semestr studiów kierunku Transport.

Wymagania wstępne w kategorii Wiedzy: Wymagane są podstawowe wiadomości z zakresu matematyki, fizyki, termodynamiki oraz mechaniki ogólnej.

Wymagania wstępne w kategorii Umiejętności: Umiejętność analizy i pozyskiwania danych z literatury.

Wymagania wstępne w kategorii Kompetencji społecznych: Student rozumie konieczność samokształcenia i dokształcania.

Efekty kształcenia dla zajęć

MEK Student, który zaliczył zajęcia Formy zajęć/metody dydaktyczne prowadzące do osiągnięcia danego efektu kształcenia Metody weryfikacji każdego z wymienionych efektów kształcenia Związki z KEK Związki z OEK
01 Zna zasadę działania tłokowego silnika spalinowego. wykład egzamin cz. pisemna K_W005+
K_W006+
W01+
W03+
W04+
02 Zna przebieg procesów zachodzących w silnikach spalinowych - proces napełniania, spalania, wylotu. wykład, laboratorium egzamin cz. pisemna, zaliczenie cz. ustna K_W005+
W01+
W04+
03 Zna budowę i zasadę działania podstawowych układów funkcjonalnych silnika spalinowego. wykład, laboratorium egzamin cz. pisemna, zaliczenie cz. ustna K_W009+
W03+
W05+
04 Potrafi wskazać na podstawowe techniki i metody stosowane w pomiarach parametrów operacyjnych silnika spalinowego laboratorium zaliczenie cz. ustna K_W008+
W07+
05 Potrafi dokonać interpretacji wyników uzyskanych podczas badań hamownianych silnika spalinowego. Potrafi przeprowadzić podstawowe pomiary w zakresie oceny funkcjonowania silnika spalinowego. wykład, laboratorium egzamin cz. pisemna, zaliczenie cz. ustna K_U001+
K_U006+
K_U007+
U01+
U02+
U03+
U04+
U05+
U06+
U07+
U08+
U09+
U11+
U13+
U14+
U16+
06 Potrafi pracować w zespole w zakresie prowadzenia badań silnikowych, umie wskazać na wady i zalety głównych układów funkcjonalnych silnika, zna zastosowania silników spalinowych w transporcie wykład, gra dydaktyczna egzamin cz. pisemna, zaliczenie cz. ustna K_K001+
K_K004+
K01+
K03+
K04+

Uwaga: W zależności od sytuacji epidemicznej, jeżeli nie będzie możliwości weryfikacji osiągniętych efektów uczenia się określonych w programie studiów w sposób stacjonarny w szczególności zaliczenia i egzaminy kończące określone zajęcia będą mogły się odbywać przy użyciu środków komunikacji elektronicznej (w sposób zdalny).

Treści kształcenia dla zajęć

Sem. TK Treści kształcenia Realizowane na MEK
5 TK01 Wiadomości wstępne. Podział i rodzaje silników spalinowych. Obiegi teoretyczne, porównawcze i rzeczywiste tłokowych silników spalinowych. Wskaźniki pracy silnika. Bilans cieplny silnika. Proces napełniania i doładowanie silnika. Proces spalania. Budowa i funkcjonowanie systemów spalania. Mechanika układu korbowego. Budowa układu korbowo-tłokowego. Układ rozrządu, smarowania, olejenia i zasilania. W01-W06 MEK01 MEK02 MEK03
5 TK02 Wprowadzenie do zajęć laboratoryjnych. Stanowisko badawcze silnika spalinowego i cechowanie hamulca. Ocena procesu spalania w silniku na podstawie wykresu indykatorowego. Pomiar sprawności mechanicznej silnika i stopnia napełniania cylindrów silnika. Wyznaczanie charakterystyki zewnętrznej i obciążeniowej silnika. Wyznaczanie charakterystyki kąta wyprzedzenia zapłonu (wtrysku) i charakterystyki składu mieszanki silnika z ZI. Bilans cieplny silnika. Zaliczenie zajęć laboratoryjnych. L01-L06 MEK04 MEK05 MEK06

Nakład pracy studenta

Forma zajęć Praca przed zajęciami Udział w zajęciach Praca po zajęciach
Wykład (sem. 5) Godziny kontaktowe: 18.00 godz./sem.
Uzupełnienie/studiowanie notatek: 10.00 godz./sem.
Studiowanie zalecanej literatury: 3.00 godz./sem.
Laboratorium (sem. 5) Przygotowanie do laboratorium: 30.00 godz./sem.
Godziny kontaktowe: 18.00 godz./sem.
Dokończenia/wykonanie sprawozdania: 15.00 godz./sem.
Konsultacje (sem. 5) Przygotowanie do konsultacji: 3.00 godz./sem.
Udział w konsultacjach: 2.00 godz./sem.
Egzamin (sem. 5) Przygotowanie do egzaminu: 25.00 godz./sem.
Egzamin pisemny: 1.00 godz./sem.

Sposób wystawiania ocen składowych zajęć i oceny końcowej

Forma zajęć Sposób wystawiania oceny podsumowującej
Wykład Na egzaminie pisemnym w formie testu wielokrotnego wyboru złożonego z 24 pytań sprawdzana jest realizacja następujących efektów modułowych: MEK01, MEK02, MEK03. Ocena z egzaminu determinowana jest liczbą uzyskanych punktów. Liczba uzyskanych punktów wraz z odpowiadającymi im ocenami: 0 ÷ 9 brak zaliczenia egzaminu; 10 ÷ 12 dst; 13 ÷ 15 +dst; 16 ÷ 18 db; 19 ÷ 21 +db; 22 ÷ 24 bdb;
Laboratorium Sprawozdania i odpowiedzi z części laboratoryjnej weryfikują realizację następujących efektów modułowych: MEK04, MEK05, MEK06. Warunkiem zaliczenia części laboratoryjnej jest poprawne wykonanie wszystkich sprawozdań. Ocenę z części laboratoryjnej stanowi średnia z ocen z odpowiedzi.
Ocena końcowa Warunkiem zaliczenia modułu jest osiągnięcie wszystkich efektów modułowych i zaliczenie wszystkich form zajęć. Ocenę końcową stanowi ocena z części pisemnej egzaminu (50%) i laboratorium (50%).

Przykładowe zadania

Wymagane podczas egzaminu/zaliczenia
(-)

Realizowane podczas zajęć ćwiczeniowych/laboratoryjnych/projektowych
(-)

Inne
(-)

Czy podczas egzaminu/zaliczenia student ma możliwość korzystania z materiałów pomocniczych : nie

Treści zajęć powiazane są z prowadzonymi badaniami naukowymi: tak

1 A. Jaworski; A. Krzemiński; H. Kuszewski; P. Woś A comparative study on selected physical properties of diesel–ethanol–dodecanol blends 2024
2 A. Jaworski; H. Kuszewski Investigating the Effect of 2-Ethylhexyl Nitrate Cetane Improver (2-EHN) on the Autoignition Characteristics of a 1-Butanol–Diesel Blend 2024
3 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski Performance of a Diesel Engine Fueled by Blends of Diesel Fuel and Synthetic Fuel Derived from Waste Car Tires 2024
4 K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer 2024
5 K. Balawender; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lew; P. Woś Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio 2024
6 S. Boichenko; H. Kuszewski; V. Ribun; P. Woś Analysis of Conventional and Nonconventional GTL Technologies: Benefits and Drawbacks 2024
7 A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś The investigation of auto-ignition properties of 1-butanol–biodiesel blends under various temperatures conditions 2023
8 A. Jaworski; H. Kuszewski; R. Longwic; P. Sander Assessment of Self-Ignition Properties of Canola Oil–n-Hexane Blends in a Constant Volume Combustion Chamber and Compression Ignition Engine 2023
9 B. Babiarz; A. Jaworski; H. Kuszewski; V. Mateichyk; M. Mądziel; S. Porada; M. Śmieszek; P. Woś Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NOX Emissions Reduction in Sustainable Public Transport 2023
10 K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; K. Lew; R. Longwic; P. Wojewoda; P. Woś Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests 2023
11 A. Jaworski; H. Kuszewski; M. Mądziel Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions 2022
12 K. Balawender; T. Campisi ; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda; P. Woś Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle 2022
13 T. Campisi; A. Jaworski; H. Kuszewski; K. Lew; M. Mądziel; P. Woś The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques 2022
14 A. Jaworski; H. Kuszewski; M. Mądziel Lubricity of Ethanol-Diesel Fuel Blends-Study with the Four-Ball Machine Method 2021
15 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; J. Lubas Effect of temperature on tribological properties of 1-butanol–diesel fuel blends-Preliminary experimental study using the HFRR method 2021
16 T. Campisi; A. Jaworski; H. Kuszewski; M. Mądziel; P. Woś Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool 2021
17 K. Balawender; A. Jaworski; D. Konieczny; H. Kuszewski; P. Woś Wykrywanie spalania stukowego w silniku dwupaliwowym 2020
18 K. Balawender; M. Jakubowski; A. Jaworski; H. Kuszewski; K. Lejda; S. Siedlecka; A. Ustrzycki; E. Zielińska Modeling of Unburned Hydrocarbon Emission in a Di Diesel Engine Using Neural Networks 2020
19 K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; A. Ustrzycki; P. Wojewoda Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures 2020
20 K. Balawender; M. Jakubowski; M. Jaremcio; A. Jaworski; H. Kuszewski; K. Lejda; K. Lew; M. Mądziel; P. Woś The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled by Petrol and LPG 2020
21 K. Balawender; M. Jaremcio; A. Jaworski; A. Krzemiński; H. Kuszewski; K. Lew; M. Mądziel; P. Woś Realizacja cyklu jezdnego w badaniach emisji zanieczyszczeń na hamowni podwoziowej 2020
22 K. Balawender; S. Boichenko; A. Jaworski; H. Kuszewski; M. Mądziel; L. Pavliukh; D. Savostin-Kosiak Assessment of CO2 emissions and energy consumption during stationary test of vehicle with SI engine powered by different fuels 2020
23 S. Boichenko; H. Kuszewski; K. Lejda; I. Trofimov; A. Yakovlieva Anti-wear Properties of Jet Fuel with Camelina Oils Bio-Additives 2020
24 H. Kuszewski Effect of Injection Pressure and Air–Fuel Ratio on the Self-ignition Properties of 1-butanol–Diesel Fuel Blends: Study Using a Constant-Volume Combustion Chamber 2019
25 H. Kuszewski Experimental investigation of the autoignition properties of ethanol-biodiesel fuel blends 2019
26 H. Kuszewski Experimental study of the autoignition properties of n-butanol–diesel fuel blends at various ambient gas temperatures 2019
27 S. Boichenko; H. Kuszewski; K. Lejda; O. Vovk; A. Yakovlieva Development of alternative jet fuels modified with camelina oil bio-additives 2019